Answer:
Power, P = 30 W
Explanation:
We have,
Voltage drop of a circuit is 60 V
Resistance of the resistor is 120 ohms
Current across the circuit is 0.5 A
It is required to find the power conducted by the resistor. Power conducted by a resistor is given by :

V and I are voltage and current

So, the power conducted by the resistor is 30 watts.
The rod's mass moment of inertia is 5kgm².
<h3>Moment of Inertia:</h3>
The "sum of the product of mass" of each particle with the "square of its distance from the axis of rotation" is the formula for the moment of inertia.
The Parallel axis Theorem can be used to compute the moment of inertia about the end of the rod directly or to derive it from the center of mass expression. I = kg m². We can use the equation for I of a cylinder around its end if the thickness is not insignificant.
If we look at the rod we can assume that it is uniform. Therefore the linear density will remain constant and we have;
or = M / L = dm / dl
dm = (M / L) dl


Here the variable of the integration is the length (dl). The limits have changed from M to the required fraction of L.

![I = \frac{M}3L}[(\frac{L^3}{2^3} - \frac{-L^3}{2^3} )]\\\\I = \frac{1}{12}ML^2](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7BM%7D3L%7D%5B%28%5Cfrac%7BL%5E3%7D%7B2%5E3%7D%20%20%20-%20%5Cfrac%7B-L%5E3%7D%7B2%5E3%7D%20%29%5D%5C%5C%5C%5CI%20%3D%20%5Cfrac%7B1%7D%7B12%7DML%5E2)
Mass of the rod = 15 kg
Length of the rod = 2.0 m
Moment of Inertia, I = 
= 5 kgm²
Therefore, the moment of inertia is 5kgm².
Learn more about moment of inertia here:
brainly.com/question/14119750
#SPJ4
Answer:
a) 2.22 %
b) Range would be 60±1.998 km/h
Explanation:
Percentage uncertainty indicates the error of a reading. With the percentage uncertainty error for a measurement can be calculated.
a) Percentage uncertainty would be

Percent uncertainty is 2.22%
b) For 60 km/h error would be

Range would be 60±1.998 km/h