The formula to solve this is (.80)^3 X 6 and the answer would be 3.1 feet. That is how high the ball will rebound after its third bounce. Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help.
This is the period in a simple harmonic motion which is 2 seconds in this question.
<h3>
What is Period ?</h3>
The period of an oscillatory object can be defined as the total time taken by a vibrating body to make one complete revolution about a reference point.
We are given the below question
2×3.14√(1.0m/(9.8〖ms〗^(2) )= T
This question can as well be expressed as
2π√(L/g) which is equal to period T.
In a nut shell, Period T = 2×3.14√(1.0m/9.8)
T = 6.28√0.102
T = 6.28 × 0.32
T = 2.006 s
Therefore, the period T of the oscillation is 2 seconds approximately.
Learn more about Period here: brainly.com/question/12588483
#SPJ1
Answer:
Water breaking down into hydrogen and oxygen is a decomposition reaction
Hydrogen and oxygen combining to form water is a synthesis reaction
Explanation:
A decomposition reaction is a chemical reaction that involves the breakdown of a chemical reactant entity into two or more simpler product fragments
Water H₂O undergoes a decomposition reaction by breaking down into hydrogen, H₂,, and oxygen, O₂, as follows;
2H₂O (l) → 2H₂ (g) + O₂ (g)
A synthesis reaction is a reaction that involves the chemical combination of two or more dissimilar molecules or atoms to produce a different compound or molecule
Water, H₂O, is formed by a synthesis reaction of hydrogen, H₂,, and oxygen, O₂, combining as follows;
2H₂ + O₂ → 2H₂O
FEMA stands for <span>Federal Emergency Management Agency</span>
Answer:
The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Explanation:
Given that,
Mass = 2.15 kg
Distance = 0.0895 m
Amplitude = 0.0235 m
We need to calculate the spring constant
Using newton's second law

Where, f = restoring force


Put the value into the formula


We need to calculate the kinetic energy of the mass
Using formula of kinetic energy

Here, 

Here, 


Put the value into the formula


Hence, The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.