Answer:
a) pH = 4.68 (more effective)
b) pH =4.44.
Explanation:
The pH of buffer solution is obtained by Henderson Hassalbalch's equation.
The equation is:
![pH =pKa +log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%20%3DpKa%20%2Blog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
a) pKa of acetic acid = 4.74
[salt] = [CH₃COONa] = 1.4 M
[acid] = [CH₃COOH] = 1.6 M

This is more effective as there is very less difference in the concentration of salt and acid.
b) pKa of acetic acid = 4.74
[salt] = [CH₃COONa] = 0.1 M
[acid] = [CH₃COOH] = 0.2 M

The correct answer is B. Water that has condensed and formed water droplets on the ground, grass, and other outdoor objects is known as dew. It is water formed due to condensation in early morning or evening. It is formed when the temperature of the objects reach below the dew point of the air around.
I would say the energy has to be decreased by 87 kj because the bonding is held together by 87 kj so removing that should prevent the bonding from taking place or reverse it I believe. In other words, a certain amount of energy is required to hold the bond together and in the absence of that energy, the bonding will not take place.
Answer:
Yes, wind and temperature are responsible for the spreading of fire.
Explanation:
Chemistry play a key role in the chemical reaction that is occurring in the wildfires because chemistry is the study of chemicals and in wildfires, the reaction of chemicals is responsible for the occurring and spreading of fire. Yes, wind currents and temperature has a great influence on the fire spreading in the forests. The fire occurs in the forest is due to temperature while its spreading happens due to wind. Placing water on the fire does not help extinguish the fire because the the fire particles can be transmitted for a fair distance by wind.