The question doesn't describe any experiment. If the same experiment is repeated, no matter how many times, the acceleration due to gravity will remain the same as it was during the non-existent original experiment, and will have no effect on anything.
Answer:
Ro = 7.8 [g/cm³]
Explanation:
According to the principle of Archimedes, the volume of a body immersed in a liquid is equal to the volume displaced by water. That is, in this problem The displacement volume is equal to the new volume minus the original volume.
![V_{n}=110[cm^{3} ]\\V_{o}=100[cm^{3} ]\\V_{d}=110-100 = 10 [cm^{3} ]](https://tex.z-dn.net/?f=V_%7Bn%7D%3D110%5Bcm%5E%7B3%7D%20%5D%5C%5CV_%7Bo%7D%3D100%5Bcm%5E%7B3%7D%20%5D%5C%5CV_%7Bd%7D%3D110-100%20%3D%2010%20%5Bcm%5E%7B3%7D%20%5D)
We now know that density is defined as the relationship between mass and volume.

where:
Ro = density [g/cm³]
m = mass = 78 [g]
Vd = displacement volume [cm³]
![Ro = 78/10\\Ro = 7.8 [g/cm^{3} ]](https://tex.z-dn.net/?f=Ro%20%3D%2078%2F10%5C%5CRo%20%3D%207.8%20%5Bg%2Fcm%5E%7B3%7D%20%5D)
I would say A not 100℅ thou
I actually know the answer to this one, you use pennies to find the atomic weight of a penny, it really doesn't have a weight. LOL