Water is H2O but I'm not sure about solids.
Answer:

Explanation:
We are asked to find how many moles are in 4.8 × 10²³ fluorine atoms. We convert atoms to moles using Avogadro's Number or 6.022 × 10²³. This is the number of particles (atoms, molecules, formula units, etc.) in 1 mole of a substance. In this case, the particles are atoms of fluorine.
We will convert using dimensional analysis and set up a ratio using Avogadro's Number.

We are converting 4.8 × 10²³ fluorine atoms to moles, so we multiply the ratio by this number.

Flip the ratio so the units of atoms of fluorine cancel each other out.


Condense into 1 fraction.

Divide.

The original measurement of atoms has 2 significant figures, so our answer must have the same. For the number we found, that is the hundredths place. The 7 in the thousandths tells us to round the 9 in the hundredths place up to a 0. Then, we also have to round the 7 in the tenths place up to an 8.

4.8 × 10²³ fluorine atoms are equal to <u>0.80 moles of fluorine.</u>
The choices for this problem are bismuth, Bi; platinum, Pt; selenium, Se; calcium, Ca and copper, Cu. I think the correct answer would be selenium. The melting point of bismuth is at a temperature of 544.4 Kelvin. At a temperature of 525 K, it would exist as solid. Platinum melts at 2041.1 K. At 525 K, platinum would be in solid form. Selenium has a melting point at 494 K so that at a temperature of 525 K, it would exist in its liquid state. Calcium has a melting point of 1112 K so it would exist as solid at 525 K. Copper has a melting point at 1358 K, so it would still exist as solid at a temperature of 525 K. Therefore, the answer would only be selenium.
If Star A appears to move back and forth by a greater amount than Star B, which star do you think is actually closer to you? Star A. If the parallax angle for a star is 1 arcsecond, what is the distance from the Sun to that star
Answer:
Electrons
Explanation:
Cathode rays carry electronic currents through the tube. Electrons were first discovered as the constituents of cathode rays. J.J. Thomson used the cathode ray tube to determine that atoms had small negatively charged particles inside of them, which he called “electrons.”