Answer: 2.3 moles
Explanation:
Recall that based on Avogadro's law, 1 mole of any substance has 6.02 x 10^23 atoms
So if 1 mole of Aluminum = 6.02 x 10^23 atoms
Then, Z moles = 1.4 x 10^24 atoms
To get the value of Z, we cross multiply:
1 mole x 1.4 x 10^24 atoms = Z x (6.02 x 10^23 atoms)
1.4 x 10^24 atoms = Z x (6.02 x 10^23)
Hence, Z = (1.4 x 10^24 atoms) ➗ (6.02 x 10^23 atoms)
Z =2.3 moles
Thus, there are 2.3 moles in 1.4 x 10^24 atoms of aluminum.
Answer:
Please, see attached two figures:
- The first figure shows the solutility curves for several soluts in water, which is needed to answer the question.
- The second figure shows the reading of the solutiblity of NH₄Cl at a temperature of 60°C.
Explanation:
The red arrow on the second attachement shows how you must go vertically from the temperature of 60ºC on the horizontal axis, up to intersecting curve for the <em>solubility</em> of <em>NH₄Cl.</em>
From there, you must move horizontally to the left (green arrow) to reach the vertical axis and read the solubility: the reading is about in the middle of the marks for 50 and 60 grams of solute per 100 grams of water: that is 55 grams of grams of solute per 100 grams of water.
Assuming density 1.0 g/mol for water, 10 mL of water is:
Thus, the solutibily is:
Particulate movement and energy increases when a liquid is heated to its boiling point. Explanation: When a liquid is heated to its boiling point, the form of the liquid changes. ... The particles with cinematic energy begin to move more randomly. So we can say that the particle movement and the energy grow.