<u>Answer:</u> The molality of potassium hydroxide solution is 0.608 m
<u>Explanation:</u>
We are given:
3.301 mass % of potassium hydroxide solution.
This means that 3.301 grams of potassium hydroxide is present in 100 grams of solution
Mass of solvent = Mass of solution - Mass of solute (KOH)
Mass of solvent = (100 - 3.301) g = 96.699 g
To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute (KOH) = 3.301 g
= Molar mass of solute (KOH) = 56.1 g/mol
= Mass of solvent = 96.699 g
Putting values in above equation, we get:

Hence, the molality of potassium hydroxide solution is 0.608 m
The boiling point of HF is higher than the boiling point of
, and it is higher than the boiling point of
.
<h3>What is the boiling point?</h3>
The boiling point is the temperature at which the pressure exerted by the surroundings upon a liquid is equalled by the pressure exerted by the vapour of the liquid.
has weak dispersion force attractions between its molecules, whereas liquid HF has strong ionic interactions between
and
ions.
Only London Forces are formed - Therefore more energy is required to break the intermolecular forces in HF than in the other hydrogen halides and so HF has a higher boiling point.
and
will only have intra-molecular attractions and there will be no hydrogen bonds present in them. As a result, their boiling point will be lower.
Hence, the boiling point of HF is higher than the boiling point of
, and it is higher than the boiling point of
.
Learn more about the boiling point:
brainly.com/question/25777663
#SPJ1
Answer: But-2-enoic acid has
11 Sigma Bonds and
2 Pi Bonds.
Explanation: The sigma bonds which are formed due to head to head overlap of partally filled orbitals are shown in
red color, while Pi bonds which are formed after the formation of sigma bond by overlap of orbitals perpendicular to the sigma bond are shown in
blue color.
The masses of the objects and the distance between them
-hope it helps