Answer:
If the frequency of the source is increased the current in the circuit will decrease.
Explanation:
The current through the circuit is given as;

Where;
V is the voltage in the AC circuit
Z is the impedance

Where;
R is the resistance
is the inductive reactance
= ωL = 2πfL
where;
L is the inductance
f is the frequency of the source
Finally, the current in the circuit is given as;

From the equation above, an increase in frequency (f) will cause a decrease in current (I).
Therefore, If the frequency of the source is increased the current in the circuit will decrease.
Answer:
Tectonic plate interactions are of three different basic types: Divergent boundaries are areas where plates move away from each other, forming either mid-oceanic ridges or rift valleys. These are also known as constructive boundaries. Convergent boundaries are areas where plates move toward each other and collide.
Explanation:
Meaning the answer to your question is depending on what type of tectonic plate interaction is occurring will depend on how the plates interact.
Answer:
change in relative vorticity 0.0590
Explanation:
Given data
pressure = 1000 hPa
temperature lapse rate q1 = 3.1◦C per 50 hPa
pressure = 850 hPa
temperature lapse rate q2= -0.61◦C per 50 hPa
to find out
change in relative vorticity
solution
we will apply here formula that is
N = (g / potential temperature ) × (potential vertical temperature) × exp^1/2 ............................1
here we know g = 9.8 m/s
and q1 = potential temperature=3.3 degree celsius
potential vertical temperature gradient = 3.1 - 0.61 / 1000 -850
potential vertical temperature gradient = 0.0166 degree celsius/hpa
so
N = 9.8 / 2.75 × 0.0166 × exp^1/2
N = 0.0590