Answer:
The time taken for the race is 17.20 s.
Explanation:
It is given in the problem that a 62.0 kg sprinter starts a race with an acceleration of 1.44 meter per second square.The initial speed of the sprinter is zero as it starts from the rest.
Calculate the final speed of the sprinter.
The expression for the equation of the motion is as follows;

Here, u is the initial speed, v is the final speed, a is the acceleration and s is the distance.
Put u= 0, s=30 m and
.


Calculate time taken to cover 30 m distance.
The expression for the equation of motion is as follows;

Put u= 0, s=30 m and
.

t=6.45 s
Calculate the time taken to complete his race.
T= t+t'
Here, t is the time taken to cover 30 m distance and t' is the time taken to cover 100 m distance.

Put s= 30 m,
and s'= 100 m.

T= 17.20 s
Therefore, the time taken for the race is 17.20 s.
The answer is P-waves and S-waves
On the surface of the earth, an object with a mass of 100 kg will weigh approximately 980 Newtons.
Please rate Brainliest (:
Answer:
Option A
Explanation:
The graph for this problem must depict the following ""Increased allocation of resources to reproduction relative to growth diminished future fecundity."
Hence, the survivor ship must be on the Y axis and the resources on the X axis.
Here the resources include the number of seeds produced.
hence, the higher is the number of seeds (resource), the lower is the survivorship (future fecundity)
Hence, option A is correct
I would assume air resistance is negligible and so the acceleration of the package would be approximately 9.81 m/s².
Taking downwards as positive, use v²=u²+2as.
v²=(-2)²+2(9.81)(14)
v=16.7 m/s