I think it would definitely be dinvi and the ghosts just because I really relate to that story
Answer:

Explanation:
Using the expression shown below as:

Where,
is the number of vacancies
N is the number of defective sites
k is Boltzmann's constant = 
is the activation energy
T is the temperature
Given that:

N = 10 moles
1 mole = 
So,
N = 
Temperature = 425°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (425 + 273.15) K = 698.15 K
T = 698.15 K
Applying the values as:

![ln[\frac {2.3}{6.023}\times 10^{-11}]=-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}](https://tex.z-dn.net/?f=ln%5B%5Cfrac%20%7B2.3%7D%7B6.023%7D%5Ctimes%2010%5E%7B-11%7D%5D%3D-%5Cfrac%20%7BQ_v%7D%7B1.38%5Ctimes%2010%5E%7B-23%7D%5Ctimes%20698.15%7D)

Answer:
The amplitude of the absorbed mass can be found
for ka:

now
![w^2=\frac{K_{a} }{m_{a} } \\m_{a} =\frac{K_{a} }{w^2} =\frac{125000}{[6000*2\pi /60]^2} =0.317kg](https://tex.z-dn.net/?f=w%5E2%3D%5Cfrac%7BK_%7Ba%7D%20%7D%7Bm_%7Ba%7D%20%7D%20%5C%5Cm_%7Ba%7D%20%3D%5Cfrac%7BK_%7Ba%7D%20%7D%7Bw%5E2%7D%20%3D%5Cfrac%7B125000%7D%7B%5B6000%2A2%5Cpi%20%2F60%5D%5E2%7D%20%3D0.317kg)
Answer:
The following statements are true:
A. For flows over a flat plate, in the laminar region, the heat transfer coefficient is decreasing in the flow direction
C. For flows over a flat plate, the transition from laminar to turbulence flow only happens for rough surface
E. In general, turbulence flows have a larger heat transfer coefficient compared to laminar flows 6.
Select ALL statements that are TRUE
B. In the hydrodynamic fully developed region, the mean velocity of the flow becomes constant
D. For internal flows, if Pr>1, the flows become hydrodynamically fully developed before becoming thermally fully developed
Explanation: