Answer:
Planet C
Explanation:
The figure of the problem is missing: find it in attachment.
The magnitude of the gravitational force between two objects is given by the equation:

where
G is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
In this problem, we have four planets around planet X, and the mass of each planet is proportional to its size in the figure.
As we can see from the previous equation, the magnitude of the gravitational force is proportional to the mass of the planets: therefore, the planet with largest mass will exert the largest gravitational force on planet X.
From the figure, we see that planet C has the largest size, so the largest mass: therefore, planet C exerts the greatest gravitational force on planet X.
Explanation:
Diffraction is a characteristic phenomenon for waves, and is based on their variance to find an obstacle or a crack. The diffraction and interference are inseparable phenomena, which are so harder to identify. Since diffraction is a specific type of interference.
if the point are in the order 2, and
the equation is d×senx=mL y at m=2
Some guidance notes which may help.To calculate the current flow, Ohm's law can be used. This can be written as current=voltage/resistance, or I=V/R. V is 1.5V.R for the copper wire quoted would be calculated as R = resistivity x length/cross sectional area. The area would be calculated from the formula area = pi x diameter squared/4So, R=resistivity x length divided by (pi x diameter squared/4)Until is the resistivity of copper is known, that's about as far as can be gone.Any further questions, please ask.
The average speed will be:
Total distance travelled divided by time taken
Total distance (in metres)= 80+125+45=250
Total time (minutes) =10
250/10
=25
Thus Mary's average speed is 25 metres per minute.