At the center of a 50 m diameter circular ice rink, if a 77 kg skater traveling at 2.3
m/s and then collides with a 63 kg skates traveling at 3.7 m/s. This is how
long it will take them to glide to the edge of the rink:
Speed after the collision= √{[77(2.3)77^2]
+ [63(3.7)^2]} / (77+63)=2.09 m/s
For them to be able to get to the edge
which is 50 m away it will take them 23.9
seconds.
Answer:
v = 15 m / s
Explanation:
In this exercise we are given the position function
x = 5 t²
and we are asked for the average velocity in an interval between t = 0 and t= 3 s, which is defined by the displacement between the time interval
let's look for the displacements
t = 0 x₀ = 0 m
t = 3
= 5 3 2
x_{f} = 45 m
we substitute

v = 15 m / s
Answer:
Knowing that these metals are infact good conductors of electricity we can infer that metals are able to hold and conduct certain temperatures. Another thing we can infer is that these good conductors can be used in connection to transferring energy or electricity.
Answer:
Explanation:
Gravitational force between two objects having mass m₁ and m₂ at a distance R
F = G m₁ m₂ / R²
Force between baby and father F₁ = 6.67x10⁻¹¹ x 4.1 x 120 / .18²
= 1.01 x 10⁻⁶ N
b )
Force between baby and Jupiter
F₂ = 6.67x10⁻¹¹ x 1.9x 10²⁷ x 4.1 / ( 6.29 x 10¹¹ )²
= 1.31 x 10⁻⁶ N
c )
Ratio = 1.01 / 1.31
= .77
Answer:
ac = 72 m/s²
Fc = 504 N
Explanation:
We can find the centripetal acceleration of the hammer by using the following formula:

where,
ac = centripetal acceleration = ?
v = constant speed = 12 m/s
r = radius = 2 m
Therefore,

<u>ac = 72 m/s²</u>
<u></u>
Now, the centripetal force applied by the athlete on the hammer will be:

<u>Fc = 504 N</u>