It is dangerous to stand close to railroad tracks when a rapidly moving commuter train passes. Explain why atmospheric pressure would push you toward the moving train. Water pressure inside a hose nozzle can be less than atmospheric pressure due to the Bernoulli effect.
Pls brainliest!? :)
5.4*10^-19 C
Explanation:
For the purposes of this question, charges essentially come in packages that are the size of an electron (or proton since they have the same magnitude of charge). The charge on an electron is -1.6*10^-19
Therefore, any object should have a charge that is a multiple of the charge of an electron - It would not make sense to have a charge equivalent to 1.5 electrons since you can't exactly split the electron in half. So the charge of any integer number of electrons can be transferred to another object.
Charge = q(electron)*n(#electrons)
Since 5.4/1.6 = 3.375, we know that it can not be the right answer because the answer is not an integer.
If you divide every other option listed by the charge of an electron, you will get an integer number.
(16*10^-19 C)/(1.6*10^-19C) = 10
(-6.4*10^-19 C)/(1.6*10^-19C) = -4
(4.8*10^-19 C)/(1.6*10^-19C) = 3
(5.4*10^-19 C)/(1.6*10^-19C) = 3.375
(3.2*10^-19C)/(1.6*10^-19C) = 2
etc.
I hope this helps!
The statement to every reacting there is, there is a opposite and same reacting.
hope it helps
Answer:
kinetic energy = 414 J
Explanation:
given data
mass = 23 kg
speed = 6 m/s
height = 17 m
to find out
kinetic energy
solution
we get kinetic energy that is express as
kinetic energy = 0.5 × m × v² ..........................1
here m is mass and v is speed so
put here value we get kinetic energy
kinetic energy = 0.5 × 23 × 6²
kinetic energy = 414 J
Answer:
σ = 1.09 mm
Explanation:
<u>Step 1:</u> Identify the given parameters
rod diameter = 20 mm
stiffness constant (k) = 55 MN/m = 55X10⁶N/m
applied force (f) = 60 KN = 60 X 10³N
young modulus (E) = 200 Gpa = 200 X 10⁹pa
<u>Step 2:</u> calculate length of the rod, L



d = 20-mm = 0.02 m

A = 0.0003 m²


L = 1.14 m
<u>Step 3:</u> calculate the displacement of the rod, σ


σ = 0.00109 m
σ = 1.09 mm
Therefore, the displacement at the end of A is 1.09 mm