Answer: The area of brick in contact with the floor is 1539
.
Explanation:
Given: Length = 19 cm
Width = 9 cm
Height = 9 cm
As the brick is rectangular in shape. Hence, its area will be calculated as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that area of brick in contact with the floor is 1539
.
Hello!
The Correct Answer would 100% be:
Option "C".
"People in location C would complain about foul taste in water".
I Hope my answer has come to your Help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead! :)
(Mark As Brainliest IF Helped!)
-TheOneAboveAll :D
Answer:
Not be changed
Option: D
<u>Explanation:</u>
The physical quantity which has both ‘magnitude and direction’ is called vector. These vectors are represented by a line and an arrow, <em>the line represent the magnitude and arrow represent the direction of the physical quantity</em>. The vectors are added and subtracted according to the direction of the vectors.
According to the vector law addition while adding vectors direction and length of the vector is not be changed.<em> If the length of the vector changed the magnitude is also changed while so, while adding vectors length must not be changed.
</em>
A) d. 10T
When a charged particle moves at right angle to a uniform magnetic field, it experiences a force whose magnitude os given by

where q is the charge of the particle, v is the velocity, B is the strength of the magnetic field.
This force acts as a centripetal force, keeping the particle in a circular motion - so we can write

which can be rewritten as

The velocity can be rewritten as the ratio between the lenght of the circumference and the period of revolution (T):

So, we get:

We see that this the period of revolution is directly proportional to the mass of the particle: therefore, if the second particle is 10 times as massive, then its period will be 10 times longer.
B) 
The frequency of revolution of a particle in uniform circular motion is

where
f is the frequency
T is the period
We see that the frequency is inversely proportional to the period. Therefore, if the period of the more massive particle is 10 times that of the smaller particle:
T' = 10 T
Then its frequency of revolution will be:
