Energy transformation in fireworks supports the law of conservation of energy because the total chemical energy packed into the fireworks before they ignite must be the same as the total remaining after it explodes... I hope this was the answer you were looking for.. I love your Yoongi pfp btw! :) </3
Answer
Integral EdA = Q/εo =C*Vc(t)/εo = 3.5e-12*21/εo = 4.74 V∙m <----- A)
Vc(t) = 21(1-e^-t/RC) because an uncharged capacitor is modeled as a short.
ic(t) = (21/120)e^-t/RC -----> ic(0) = 21/120 = 0.175A <----- B)
Q(0.5ns) = CVc(0.5ns) = 2e-12*21*(1-e^-t/RC) = 30.7pC
30.7pC/εo = 3.47 V∙m <----- C)
ic(0.5ns) = 29.7ma <----- D)
Answer:
1.27 m
Explanation:
Distance = 192 m
number of rotations = 48
Distance traveled in one rotation = 2 x π x r
Where, r be the radius of wheel.
so, distance traveled in 48 rotations = 48 x 2 x 3.14 x r
It is equal to the distance traveled.
192 = 48 x 2 x 3.14 x r
r = 0.637 m
diameter of wheel = 2 x radius of wheel = 2 x 0.637 = 1.27 m
Answer:
Hydraulic pressure exerted on glass slab, ρ=10 atm
Bulk modulus of glass, B=37×10^9 Nm^−2
Bulk modulus, B=P/(ΔV/V)
where,
ΔV/V= Fractional change in volume
ΔV/V=P/B
=10×1.013×10^5 /(37×10 ^9)
=2.73×10^-5
Therefore, the fractional change in the volume of the glass slab is 2.73×10^-5
Hope it helps
Explanation:
M₂ = Fr²/GM₁
M₂ = [(132N)(.243m)²]/[(6.67*10^-11N*m²/kg)(1.175*10^4kg)]
M₂ = (7.79N*m²)/(7.84*10^-7N*m²)
M₂ = 9.94*10^6 kg