The procedure must contain : performing the experiment in a safe manner
Whatever your experiment maybe, the full steps to avoid any casualties and make the experiment as safe as possible should be included in the procedure/ instructions.
hope this helps
Momentum = mass x velocity
So both mass and velocity affect an object's momentum.
Answer:
R/l = 0.25925 Ω / m
Explanation:
Ohm's law says that the potential difference is proportional to the product of the resistance by the current
V = I R
R = V / I
In this case, since we have two lengths, we can have two lengths, we can find the resistance for each
L = 5 m
R = 7.70 / 5.47
R = 1,408 Ω
L = 10 m
R = 7.70 / 3.25
R = 2,369 Ω
We can make a direct proportions rule (rule of three) to find the resistance per unit length
For L = 5 m
R/l = 1,408 / 5
R/l = 0.2816 Ω / m
For L = 10 m
R/l = 2,369/10
R/l = 0.2369 Ω / m
We can see that the value is similar that differs from the second decimal place, in this case the value for the longer re wire is more accurate because it has a lower joule effect.
One way also to find the average value
R/l = (0.2816 + 0.2369) / 2
R/l = 0.25925 Ω / m
Answer:
19.4 seconds
Explanation:
We have:
m: mass of the car = 1500 kg
v₀: is the initial speed = 19 m/s
: is the final speed = 0 (it stops)
: is the coefficient of kinetic friction = 0.100
First, we need to find the acceleration by using the second Newton's law:


Solving for a:

Now we can find the time until it stops:

Solving for t:

Therefore, the time until it stops is 19.4 seconds.
I hope it helps you!
Mass = 1.2 kg = 1200 grams.
Volume = mass/density = 1200 cm3.
Hope this helps!