Answer:
the melting process begins right away because the air temperature around the ice cubes is warmer than the temperature in the freezer
Answer:- 448 mL of hydrogen gas are formed.
Solution:- It asks to calculate the volume of hydrogen gas formed in milliliters at STP when 0.020 moles of magnesium reacts with excess HCl acid. The balanced equation is:

There is 1:1 mol ratio between Mg and hydrogen gas. So, the moles of hydrogen gas is also equals to the moles of Mg reacted.
moles of Hydrogen gas formed = 0.020 mol
At STP, volume of 1 mol of the gas is 22.4 L. We need to calculate the volume of 0.02 moles of hydrogen gas.

= 0.448 L
They want answer in mL. So, let's convert L to mL using the conversion formula, 1L = 1000mL

= 448 mL
So, 0.020 moles of magnesium would produce 448 mL of hydrogen gas at STP on reacting with excess of HCl acid.
CO2 is carbon dioxide which is most famous for being in gas form so i would figure if it was exposed to freezing temperatures it would turn into a liquid then maybe a solid<span />
<h3><u>Answer;</u></h3>
Cations are much smaller than their corresponding parent
<h3><u>Explanation;</u></h3>
- Parent atom has more electrons and thus the effective nuclear charge on each electron is less.
- When a cation is formed electron(s) is/are lost. Thus the effective nuclear charge or simply put, the attraction of the nucleus towards the electrons increases. Therefore, due to greater pull, the nucleus pulls the shells towards it, there by reducing the size, which makes cations smaller than their corresponding parent.
Answer:
Molality of the solution = 0.7294 M
Explanation:
Given:
Number of magnesium arsenate = 1.24 moles
Mass of solution = 1.74 kg
Find:
Molality of the solution
Computation:
Molality of the solution = Mole of solute / Mass of solution = 1.74 kg
Molality of the solution = 1.24 / 1.7
Molality of the solution = 0.7294 M