1 mole of NH42SO4 contains 42 moles of H. We take the 42 moles of H and multiply that times Avogadro's number (6.02x10^23) and get 2.5284x10^25 atoms of hydrogen
The substances which dissolve most readily in water are called soluble substances and they are likely those substances which have the same polarity as water.
Answer:
A. 0.038 g.
Explanation:
- The decay of carbon-14 is a first order reaction.
- The rate constant of the reaction (k) in a first order reaction = ln (2)/half-life = 0.693/(5730 year) = 1.21 x 10⁻⁴ year⁻¹.
<u><em>The integration law of a first order reaction is:</em></u>
<em>kt = ln [Ao]/[A]</em>
k is the rate constant = 1.21 x 10⁻⁴ year⁻¹.
t is the time = 17,190 years.
[Ao] is the initial concentration of carbon-14 = 0.300 g.
[A] is the remaining concentration of carbon-14 = ??? g.
∵ kt = ln [Ao]/[A]
∴ (1.21 x 10⁻⁴ year⁻¹)(17,190 years) = ln (0.300 g)/[A]
2.08 = ln (0.300 g)/[A]
Taking exponential for both sides:
8.0 = (0.300 g)/[A]
<em>∴ [A] = 0.0375 g ≅ 0.038 g</em>
<span>Answer: 0.070 m/s
Explanation:
1) balanced chemical equation:
given: 2HBr(g) → H2 (g)+Br2(g)
2) Mole ratios:
2 mol HBr : 1 mol H2
3) That means that every time 2 moles of HBr disappear 1 mol of H2 appears.
That is, the H2 appears at half rate than the HBr disappears.
∴ rate of appearance of H2 = rate of disappearance of HBr / 2 = 0.140 m/s / 2 = 0.070 m/s, which is the answer.</span>
The answer is: Yes, the car is accelerating because it is changing direction as it goes around the curve.
- Because the direction of motion of an object even if the object is maintaining a constant speed still count as acceleration.
- Acceleration is a change in velocity, either in its magnitude i.e speed or in its direction or both.
- So, In a uniform circular motion, the direction of the velocity changes constantly, So there is always an associated acceleration, even though the speed might be constant.
-So when you go around a sharp curve if you hold the wheel steady during a turn and move at constant speed, you are in uniform circular motion. What you notice is a sideways acceleration because you and the car are changing direction.