Answer:
a hamster resulting from sexual reproduction
-- Volume . . . made out of 3 dimensions of length
-- Density . . . made out of mass, and 3 dimensions of length
-- Area . . . made out of 2 dimensions of length
-- Acceleration . . . made out of length and time
<em>Mass</em> is not made out of anything else. It's fundamental. A few other fundamental things are length, time, and electric charge.
Answer:
<h2><em>
12.45eV</em></h2>
Explanation:
Before calculating the work function, we must know the formula for calculating the kinetic energy of an electron. The kinetic energy of an electron is the taken as the difference between incident photon energy and work function of a metal.
Mathematically, KE = hf - Ф where;
h is the Planck constant
f is the frequency = c/λ
c is the speed of light
λ is the wavelength
Ф is the work function
The formula will become KE = hc/λ - Ф. Making the work function the subject of the formula we have;
Ф = hc/λ - KE
Ф = hc/λ - 1/2mv²
Given parameters
c = 3*10⁸m/s
λ = 97*10⁻⁹m
velocity of the electron v = 3.48*10⁵m/s
h = 6.62607015 × 10⁻³⁴
m is the mass of the electron = 9.10938356 × 10⁻³¹kg
Substituting the given parameters into the formula Ф = hc/λ - 1/2mv²
Ф = 6.63 × 10⁻³⁴*3*10⁸/97*10⁻⁹ - 1/2*9.11*10⁻³¹(3.48*10⁵)²
Ф = 0.205*10⁻¹⁷ - 4.555*10⁻³¹*12.1104*10¹⁰
Ф = 0.205*10⁻¹⁷ - 55.163*10⁻²¹
Ф = 0.205*10⁻¹⁷ - 0.0055.163*10⁻¹⁷
Ф = 0.1995*10⁻¹⁷Joules
Since 1eV = 1.60218*10⁻¹⁹J
x = 0.1995*10⁻¹⁷Joules
cross multiply
x = 0.1995*10⁻¹⁷/1.60218*10⁻¹⁹
x = 0.1245*10²
x = 12.45eV
<em>Hence the work function of the metal in eV is 12.45eV</em>
Answer:
B
Explanation:
A body has kinetic energy that is moving
The box is kept in motion at constant velocity by a force of F=99 N. Constant velocity means there is no acceleration, so the resultant of the forces acting on the box is zero. Apart from the force F pushing the box, there is only another force acting on it in the horizontal direction: the frictional force

which acts in the opposite direction of the motion, so in the opposite direction of F.
Therefore, since the resultant of the two forces must be zero,

so

The frictional force can be rewritten as

where

,

. Re-arranging, we can solve this equation to find

, the coefficient of dynamic friction: