Answer:
v = 7121.3 m/s
Explanation:
As we know that the centripetal force for the space shuttle is due to gravitational force of earth due to which it will rotate in circular path with constant speed
so here we will have

here we know that
r = orbital radius = 6370 km + 1482 km

also we know that

now we will have



<span>In order to determine the wavelength, we use the wave equation:
speed = frequency * wavelength
speed of light c = 3 x 10</span>⁸<span> m/s
Frequency f = 104.1 MHz = 1.041 x 10</span>⁸ Hz<span>
c = f</span>λ
λ = c / f
λ = 3 x 10⁸ / 1.041 x 10⁸
λ = 2.88 meters
The wavelength of the waves is 2.88 meters.
Answer:
The mechanical advantage of the system is 8
Explanation:
the mechanical advantage measures how much the system multiplies the input force to get the output.
In the given:
The input force (effort) is 20 Newton
The output force (load) is 160 Newton
This means that the mechanical advantage is:
mechanical advantage = load / effort = 160 / 20 = 8
Note that the mechanical advantage is unit-less (has no unit) since it is a ratio between two forces.
Hope this helps :)
A magnetic field is a mathematical description of the magnetic influence of electric currents and magnetic materials. The magnetic field at any point is specified by two values, the direction and the magnitude; such that it is a vector field. Mathematically it is described as,

Here
= Permeability at free space constant
= Current at each object
d = Distance to the center point of the two object
Two magnetic field due to the current in the same directions then is,

Replacing,



Therefore the correct answer is E.
Answer: Your question is missing below is the question
Question : What is the no-friction needed speed (in m/s ) for these turns?
answer:
20.1 m/s
Explanation:
2.5 mile track
number of turns = 4
length of each turn = 0.25 mile
banked at 9 12'
<u>Determine the no-friction needed speed </u>
First step : calculate the value of R
2πR / 4 = πR / 2
note : πR / 2 = 0.25 mile
∴ R = ( 0.25 * 2 ) / π
= 0.159 mile ≈ 256 m
Finally no-friction needed speed
tan θ = v^2 / gR
∴ v^2 = gR * tan θ
v = √9.81 * 256 * tan(9.2°) = 20.1 m/s