Answer:
The magnitude of the magnetic force this particle experiences is
.
Explanation:
Given that,
Velocity v= (3i-5j+k) m/s
Magnetic field B=(i+2j-k) T
We need to calculate the value 

We need to calculate the magnitude of the magnetic force this particle experiences
Using formula of magnetic force

Put the value into the formula



Hence, The magnitude of the magnetic force this particle experiences is
.
Answer:
The act of using senses or tools to gather information is called <em>Obser</em><em>vation</em><em>.</em>
Answer:
Explanation:
Let m be mass of each sphere and θ be angle, string makes with vertex in equilibrium.
Let T be tension in the hanging string
T cosθ = mg ( for balancing in vertical direction )
for balancing in horizontal direction
Tsinθ = F ( F is force of repulsion between two charges sphere)
Dividing the two equations
Tanθ = F / mg
tan17 = F / (7.1 x 10⁻³ x 9.8)
F = 21.27 x 10⁻³ N
if q be charge on each sphere , force of repulsion between the two
F = k q x q / r² ( r is distance between two sphere , r = 2 x .7 x sin17 = .41 m )
21.27 x 10⁻³ = (9 X 10⁹ x q²) / .41²
q² = .3973 x 10⁻¹²
q = .63 x 10⁻⁶ C
no of electrons required = q / charge on a single electron
= .63 x 10⁻⁶ / 1.6 x 10⁻¹⁹
= .39375 x 10¹³
3.9375 x 10¹² .
Explanation:
It is given that, the force needed to keep a car from skidding on a curve varies inversely as the radius of the curve and jointly as the weight of the car and the square of the car's speed such that,


mg is the weight of the car
r is the radius of the curve
v is the speed of the car
Case 1.
F = 640 pounds
Weight of the car, W = mg = 2600 pound
Radius of the curve, r = 650 ft
Speed of the car, v = 40 mph

k = 0.1
Case 2.
Radius of the curve, r = 750 ft
Speed of the car, v = 30 mph

F = 312 N
Hence, this is the required solution.