Explanation:
It is given that,
Mass of the soccer ball, m = 0.425 kg
Speed of the ball, u = 15 m/s
Angle with horizontal, 
Time for which the player's foot is in contact with it, 
Part A,
The x component of the soccer ball's change in momentum is given by :



The y component of the soccer ball's change in momentum is given by :



Hence, this is the required solution.
Answer:
Explanation:
This question is based on the Law of Conservation of Angular Momentum.
Angular momentum (L) equals the moment of inertia (I) times the angular speed (ω).
L = Iω
If momentum is conserved,
I₁ω₁ = I₂ω₂
Data:
I₁ = 3.5 kg·m²s⁻¹
ω₁ = 6.0 rev·s⁻¹
I₂ = 0.70 kg·m²s⁻¹
Calculation:

Answer: 0.47 rad/sec
Explanation:
By definition, the angular velocity is the rate of change of the angle traveled with time, so we can state the following:
ω = ∆θ/ ∆t
Now, we are told that in 13.3 sec, the ball completes one revolution around the circle, which means that, by definition of angle, it has rotated 2 π rad (an arc of 2πr over the radius r), so we can find ω as follows:
ω = 2 π / 13.3 rad/sec = 0.47 rad/sec
2000÷330=6.06 repatant so the answer would be about 6.06 seconds
Explanation:
Resonance: Resonance is the phenomenon which occurs when the applied frequency on the object is equal to its natural frequency.
In the given problem, the singing of an opera singer caused a drinking glass to shatter.
This occurs due to the phenomenon resonance. The applied frequency of the singing of an opera singer on the drinking glass matches with the natural frequency of the drinking glass. It causes a glass to shatter.