Answer:
when the ball is at its highest in the air.
Explanation:
I don't know for sure, but when the ball is in the air it has potential energy to fall(or something like that).
Answer:
a = 12 [m/s²]
Explanation:
To solve this problem we must use Newton's second law which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
ΣF = m*a
where:
ΣF = sum of forces acting on a body [N] (units of Newtons)
m = mass = 0.5 [kg]
a = acceleration [m/s²]
Let's take the direction of positive forces to the right and negative forces directed to the left
2 + 8 - 4 = 0.5*a
6 = 0.5*a
a = 12 [m/s²]
sign out and log in again...if does not work then make a new account
No because you don’t learn about synthetic inventions yet in your first year
made from pure metals . . . no;
they've been made from all kinds of weird compounds and alloys.
conduct electricity with zero resistance . . . yes;
that's why they're called "superconductors".
produce a strong magnetic field . . . possible, but not because it's a superconductor;
just like any other conductor, the magnetic field depends on the current that's flowing in the conductor.
no loss of energy in the transfer of electricity . . .
there's no loss of energy in the current flowing in the superconductor;
but if you tried to transfer the current out of the superconductor into
something else, then there would be some loss.