Answer:
A point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
Explanation:
We can find the distance with the following equation since the acceleration is cero (the disk rotates at a constant rate):

Where:
v: is the tangential speed of the disk
t: is the time = 30 s
The tangential speed can be found as follows:

Where:
ω: is the angular speed = 100 rpm
r: is the radius = 50 cm = 0.50 m
Now, the distance traveled by the disk is:

Therefore, a point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
I hope it helps you!
Honest, the map is so tiny, and so fuzzy when I blow it up, I really can't see anything on it clearly. But I think maybe I do see a letter ' C ' in the eastern Mediterranean, with a curved line over to the southern Gaza strip, where it meets Sinai. So I'll say it's the Gaza Strip.
Answer:
Mass released = 8.6 g
Given data:
Initial number of moles nitrogen= 0.950 mol
Initial volume = 25.5 L
Final mass of nitrogen released = ?
Final volume = 17.3 L
Formula:
V₁/n₁ = V₂/n₂
25.5 L / 0.950 mol = 17.3 L/n₂
n₂ = 17.3 L× 0.950 mol/25.5 L
n₂ = 16.435 L.mol /25.5 L
n₂ = 0.644 mol
Initial mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.950 mol × 28 g/mol
Mass = 26.6 g
Final mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.644 mol × 28 g/mol
Mass = 18.0 g
Mass released = initial mass - final mass
Mass released = 26.6 g - 18.0 g
Mass released = 8.6 g
Read more on Brainly.com - brainly.com/question/15623698#readmore
16,000 m/s
Since it’s speed, and the distance is unknown. Gravity isn’t applying a noticeable force too on the rocket, as if it were, then the rocket would be accelerating negatively.