Answer:
A) 21.2 kg.m/s at 39.5 degrees from the x-axis
Explanation:
Mass of the smaller piece = 200g = 200/1000 = 0.2 kg
Mass of the bigger piece = 300g = 300/1000 = 0.3 kg
Velocity of the small piece = 82 m/s
Velocity of the bigger piece = 45 m/s
Final momentum of smaller piece = 0.2 × 82 = 16.4 kg.m/s
Final momentum of bigger piece = 0.3 × 45 = 13.5 kg.m/s
since they acted at 90oc to each other (x and y axis) and also momentum is vector quantity; then we can use Pythagoras theorems
Resultant momentum² = 16.4² + 13.5² = 451.21
Resultant momentum = √451.21 = 21.2 kg.m/s at angle 39.5 degrees to the x-axis ( tan^-1 (13.5 / 16.4)
It’s the crest, the crest is the top part of the wave and the trough is the bottom so they correspond
Galaxies are sprawling systems of dust, gas, dark matter, and anywhere from a million to a trillion stars that are held together by gravity. Nearly all large galaxies are thought to also contain supermassive black holes at their centers.
Answer:
26b) 66.7%
27) 500 N
Explanation:
26.a) In a two pulley system, the load is attached to one of the pulleys. The other pulley is attached to a fixed surface, as well as one end of the rope. The other end of the rope goes around moving pulley, then around the fixed pulley.
26.b) Mechanical advantage is the ratio between the forces:
MA = load force / effort force
Efficiency is the ratio between the work:
e = work done on load / work done by effort
Work is force times distance.
e = (F load × d load) / (F effort × d effort)
Rearranging:
e = (F load / F effort) × (d load / d effort)
e = MA × (d load / d effort)
In a two pulley system, the load moves half the distance of the effort. So the efficiency is:
e = (4/3) × (1/2)
e = 2/3
e = 66.7%
27) In a three pulley system, the load moves a third of the distance of the effort.
e = (F load / F effort) × (d load / d effort)
0.40 = (600 N / F) × (1/3)
F = 500 N