Answer:
40% of the energy release by the peanut is 3500 calories
Explanation:
One calorie is defined as the amount of energy required to increase the temperature of one gram of water for one degree Celsius (or one Kelvin)
Equation for energy gain by water is
Q = mcΔT
where, m is the mass of the object
c is the specific heat capacity
ΔT is the change in temperature
c = 1.0 cal/g?°C.
m = 50 g
ΔT = 50°C - 22°C
= 28°C
Q = (50)× (1)× (28)
= 1400calories
The peanut contain 1400calories of energy .
amount that 40% of energy is released to water ,
so,
Q = 1400 calories / 0.4
= 3500 calories
Therefore, 40% of the energy release by the peanut is 3500 calories
Answer:
The microbiome is defined as the collective genomes of the microbes (composed of bacteria, bacteriophage, fungi, protozoa and viruses) that live inside and on the human body. We have about 10 times as many microbial cells as human cells.
Explanation:
Hope this helps
Sound actually travels slower in air.This is because sound is kinetic energy and has to pass from molecule to molecule.In gas the molecules are farther apart taking more time for it to pass,in water the molecules are closer so it takes less time for the sound to get from one molecule to another and with cast iron (since it's very dense) the molecules are very close allowing sound to travel quickly with ease.
The average kinetic energy of an ideal gas is calculated as
KE_avg = 3/2 kT
where T is the temperature in Kelvin and k=R/N_A; R is the universal gas constant and N_A is the number of moles.
Thus, upon substitution we get
KE_avg = 3/2(8.314/1)(100+273)
KE_avg = 3/2(8.314)(373)
KE_avg = 4651.683
The average kinetic energy of 1 mole of a gas at 100 degree Celsius is 4651.683 J.
Don't trust atoms, they make up everything.
How about chemical workers... are they unionized?