Answer:
4,524,660 N
Explanation:
Assuming the submarine's density is uniform, 1/9th of the submarine's mass is equal to the mass of the displaced water.
m/9 = (1026 kg/m³) (50 m³)
m = 461,700 kg
mg = 4,524,660 N
Answer:
Star formation occurs most rapidly in the spiral arms, where the density of interstellar matter is highest.
Answer:
A star uses fusion as an energy source by building larger atoms from smaller atoms.
Explanation:
Nuclear fission and fusion are two processes at which an atomic nucleus is changed to produce energy. Fission is the process splitting heavy atomic into lighter atomic nuclei.
So, fusion is the combination of smaller atoms to form larger atoms and star uses this as source of energy.
Fusion is the process at which light atomic nuclei are merged or fused together to form heavier nuclei.
The energy source for all stars is nuclear fusion. In a nuclear fusion reaction, the nuclei of two atoms combine to create a new atom. Most commonly, in the core of a star, two hydrogen atoms fuse to become a helium atom.
Answer:
Wt = 26.84 [N]
Explanation:
In order to solve this problem we must use the definition of work in physics. Which tells us that this is equal to the product of force by distance.
In this case, we must sum the works of the force applied by the box and the friction force that also acts on the box.
The friction force is defined as the product of the normal force by the coefficient of friction.
f = N*μ
where:
N = normal force = m*g [N] (units of Newtons)
m = mass = 72 [kg]
g = gravity acceleration = 9.81 [m/s²]
f = friction force [N]
μ = friction coefficient = 0.21
f = 72*9.81*0.21
f = 148.32 [N]
Now the total work:
Wt = WF - Wf
where:
Wt = total work [J] (units of Joules)
WF = work by the pushing force [J]
Wf = work done by the friction force [J]
Wt = (160*2.3) - (148.32*2.3)
Wt = 26.84 [N]
Note: The friction force exerts a negative work, because this force is acting in opposite direction to the movement, therefore the negative sign.