Substance A would have a delta T (change in temp) rise 1/2 the rise in substance B.
Q=mc x delta T
Q= heat energy in Joules
m= mass of substance heated or cooled
c= specific heat
ΔT is change in temp.
Solve for change in temp=. Q/mc
Specific heat and mass are not inversely proportional to heat energy input.
Putting into real world scenario of using water to heat a building.
Specific heat of water is 1.
It takes 1 btu to raise one pound of water 1 degF. at a base of 60 degF
Acetone specific heat is .51
So it takes half the amount of heat input to get a 100 degree ΔT, as compared to water.
Answer:
(a) 8Ω (b) Ratio = Parra/P8 ohm = 1
Explanation:
Solution
Recall that,
An high-fidelity amplifier has one output for a speaker of resistance of = 8 Ω
Now,
(a) How can two 8-Ω speakers be arranged, when one = 4-Ω speaker, and one =12-Ω speaker
The Upper arm is : 8 ohm, 8 ohm
The Lower arm is : 12 ohm, 4 ohm
The Requirement is = (16 x 16)/(16 + 16) = 8 ohm
(b) compare your arrangement power output of with the power output of a single 8-Ω speaker
The Ratio = Parra/P8 ohm = 1
In an open system such as a campfire, matter can lose particles, gain particles or exchange particles.