<u>Answer:</u>
<em>Thunderbird is 995.157 meters behind the Mercedes</em>
<u>Explanation:</u>
It is given that all the cars were moving at a speed of 71 m/s when the driver of Thunderbird decided to take a pit stop and slows down for 250 m. She spent 5 seconds in the pit stop.
Here final velocity 
initial velocity
distance
Distance covered in the slowing down phase = 







The car is in the pit stop for 5s 
After restart it accelerates for 350 m to reach the earlier velocity 71 m/s





total time= 
Distance covered by the Mercedes Benz during this time is given by 
Distance covered by the Thunderbird during this time=
Difference between distance covered by the Mercedes and Thunderbird
= 
Thus the Mercedes is 995.157 m ahead of the Thunderbird.
Answer:
Explanation:
The moment of inertia is the integral of the product of the squared distance by the mass differential. Is the mass equivalent in the rotational motion
a) True. When the moment of inertia is increased, more force is needed to reach acceleration, so it is more difficult to change the angular velocity that depends proportionally on the acceleration
b) True. The moment of inertia is part of the kinetic energy, which is composed of a linear and an angular part. Therefore, when applying the energy conservation theorem, the potential energy is transformed into kinetic energy, the rotational part increases with the moment of inertia, so there is less energy left for the linear part and consequently it falls slower
c) True. The moment of inertial proportional to the angular acceleration, when the acceleration decreases as well. Therefore, a smaller force can achieve the value of acceleration and the change in angular velocity. Consequently, less force is needed is easier
Answer:
balanced?
Explanation:
because if it wasn't moving that means they are pulling at a similar strength