Answer:
A)
= 1.44 kg m², B) moment of inertia must increase
Explanation:
The moment of inertia is defined by
I = ∫ r² dm
For figures with symmetry it is tabulated, in the case of a cylinder the moment of inertia with respect to a vertical axis is
I = ½ m R²
A very useful theorem is the parallel axis theorem that states that the moment of inertia with respect to another axis parallel to the center of mass is
I =
+ m D²
Let's apply these equations to our case
The moment of inertia is a scalar quantity, so we can add the moment of inertia of the body and both arms
=
+ 2
= ½ M R²
The total mass is 64 kg, 1/8 corresponds to the arms and the rest to the body
M = 7/8 m total
M = 7/8 64
M = 56 kg
The mass of the arms is
m’= 1/8 m total
m’= 1/8 64
m’= 8 kg
As it has two arms the mass of each arm is half
m = ½ m ’
m = 4 kg
The arms are very thin, we will approximate them as a particle
= M D²
Let's write the equation
= ½ M R² + 2 (m D²)
Let's calculate
= ½ 56 0.20² + 2 4 0.20²
= 1.12 + 0.32
= 1.44 kg m²
b) if you separate the arms from the body, the distance D increases quadratically, so the moment of inertia must increase
Answer:
Physics is the answer to all the forces in nature and it is important to know all of that in a day to day life to succeed in life
Explanation:
The question "<span>In a redox reaction the substance that accepts electrons is said to be?" is a bit vague. By definition, a "redox" or "reduction" reaction is one where classified by a gain of electrons. On the other hand, if it is a loss of electrons, then it is an oxidation reaction.</span>
Answer:
The answer is 'more' as more mass can exert more pressure
Answer:
Explanation:
Given that, .
R = 12 ohms
C = 500μf.
Time t =? When the charge reaches 99.99% of maximum
The charge on a RC circuit is given as
A discharging circuit
Q = Qo•exp(-t/RC)
Where RC is the time constant
τ = RC = 12 × 500 ×10^-6
τ = 0.006 sec
The maximum charge is Qo,
Therefore Q = 99.99% of Qo
Then, Q = 99.99/100 × Qo
Q = 0.9999Qo
So, substituting this into the equation above
Q = Qo•exp(-t/RC)
0.9999Qo = Qo•exp(-t / 0.006)
Divide both side by Qo
0.9999 = exp(-t / 0.006)
Take In of both sodes
In(0.9999) = In(exp(-t / 0.006))
-1 × 10^-4 = -t / 0.006
t = -1 × 10^-4 × - 0.006
t = 6 × 10^-7 second
So it will take 6 × 10^-7 a for charge to reached 99.99% of it's maximum charge