1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kykrilka [37]
3 years ago
12

Problem PageQuestion A cylinder measuring 2.3cm wide and 2.7cm high is filled with gas. The piston is pushed down with a steady

force measured to be 36.N. Calculate the pressure of the gas inside the cylinder. Write your answer in units of kilopascals. Round your answer to 2 significant digits.
Physics
1 answer:
Alexandra [31]3 years ago
8 0
Jehedhdhsh dbdbdbdbdbdbdbebddnsbdb
Dhdhdbdbdbdbdhfhbdbddbdbdbdbdbdbsbsbsbdbdbdb d s DVD’s
You might be interested in
What is the acceleration of a 5 kg mass pushed by a 10 n force?
pav-90 [236]
<span>2Kg50m/
s2.5m/
s2<span>2m/
s2</span></span>
6 0
3 years ago
Read 2 more answers
Consider two insulating balls with evenly distributed equal and opposite charges on their surfaces, held with a certain distance
siniylev [52]

Answer:

interest point:

1) Point on the left side

2) Point within the radius r₁ of the first sphere

3) Point between the two spheres

4) point within the radius r₂ of the second sphere

5) Right side point

Explanation:

In this case, the total electric field is the vector sum of the electric fields of each sphere, to simplify the calculation on the line that joins the two spheres

       

We will call the sphere on the left 1 and it has a positive charge Q with radius r1, the sphere on the right is called 2 with charge -Q with radius r2. The total field is

          E_ {total} = E₁ + E₂

          E_{ total} = k \frac{Q}{x_1^2} + k  \frac{Q}{x_2^2}

the bold indicate vectors, where x₁ and x₂ are the distances from the center of each sphere. If the distance that separates the two spheres is d

          x₂ = x₁ -d

          E total = k  \frac{Q}{x_1^2} - k \frac{Q}{(x_1 - d)^2}

Let's analyze the field for various points of interest.

1) Point on the left side

in this case

            E_ {total} = k Q \ ( \frac{1}{x_1^2} - \frac{1}{(x_1 +d)2} )

            E_ {total} = k \frac{Q}{x_1^2}   ( 1 - \frac{1}{(1 + \frac{d}{x_1} )^2 } )

We have several interesting possibilities:

* We can see that as the point is further away the field is more similar to the field created by two point charges

* there is a point where the field is zero

            E_ {total} = 0

             x₁² =  (x₁ + d)²

           

2) Point within the radius r₁ of the first sphere.

In this case, according to Gauus' law, the charge is on the surface of the sphere at the point, there is no charge inside so this sphere has no electric field on its inner point

              E_ {total} = -k \frac{Q}{x_2^2} = -k \frac{Q}{((d-x_1)^2}

this expression holds for the points located at

                  -r₁ <x₁ <r₁

3) Point between the two spheres

                E_ {total} = k \frac{Q}{x_1^2} + k \frac{Q}{(d+x_1)^2}

This champ is always different from zero

4) point within the radius r₂ of the second sphere, as there is no charge inside, only the first sphere contributes

                  E_ {total} = + k \frac{Q}{(d-x_1)^2}+ k Q / (d-x1) 2

point range

                  -r₂ <x₂ <r₂

             

5) Right side point

            E_ {total} = k \frac{Q}{(x_2-d)^2} - k \frac{Q}{x_2^2}

             E_ {total} = - k \frac{Q}{x_2^2} ( 1- \frac{1}{(1- \frac{d}{x_2})^2 } )- k Q / x22 (1- 1 / (x1 + d) 2)

we have two possibilities

* as the distance increases the field looks more like the field created by two point charges

* there is a point where the field is zero

8 0
2 years ago
A hydrometer is made of a tube of diameter 2.3cm.The mass of the tube and it's content is 80g. If it floats in a liquid density
iris [78.8K]

Answer:

The depth to which the hydrometer sinks is approximately 24.07 cm

Explanation:

The given parameters are;

The diameter of the hydrometer tube, d = 2.3 cm

The mass of the content of the tube, m = 80 g

The density of the liquid in which the tube floats, ρ = 800 kg/m³

By Archimedes' principle, the up thrust (buoyancy) force acting on the hydrometer = The weight of the displaced liquid

When the hydrometer floats, the up-thrust is equal to the weight of the hydrometer which by Archimedes' principle, is equal to the weight of the volume of the liquid displaced by the hydrometer

Therefore;

The weight of the liquid displaced = The weight of the hydrometer, W = m·g

Where;

g = The acceleration due to gravity ≈ 9.81 m/s²

∴ W = 80 g × g

The volume of the liquid that has a mass of 80 g (0.08 kg), V = m/ρ

V = 0.08 kg/(800 kg/m³) = 0.0001 m³ = 0.0001 m³ × 1 × 10⁶ cm³/m³ = 100 cm³

The volume of the liquid displaced = 100 cm³ = The volume of the hydrometer submerged, V_h

V_h = A × h

Where;

A = The cross-sectional area of the tube = π·d²/4

h = The depth to which the hydrometer sinks

h = V_h/A

∴ h = 100 cm³/( π × 2.3²/4 cm²) ≈ 24.07 cm

The depth to which the tube sinks, h ≈ 24.07 cm.

3 0
3 years ago
What is the energy equivalent of an object with a mass of 1.83 kg?
xxMikexx [17]
To determine the energy equivalent of an object, we use the famous equation of Einstein which is E=mc^2 where m is the mass of the object and c is the speed of light (3x10^8 m/s). We calculate as follows:

E = mc^2
E = 1.83 kg (3x10^8 m/s)^2
E = 1.647x10^17 J
6 0
3 years ago
Read 2 more answers
Roseanne heated a solution in a beaker as part of a laboratory experiment on energy transfer. After a while, she noticed the liq
Anna35 [415]
Water boilingis the answer
5 0
3 years ago
Other questions:
  • At a distance D from a very long (essentially infinite)uniform line of charge, the elecric field is 1000 N/C. Forthe field stren
    9·2 answers
  • A light ray incident on a block of glass makes an incident angle of 50.0° with the normal to the surface. The refracted ray in t
    5·1 answer
  • If an element has 7 valence electrons, how many dots will be in the elements dot diagram
    9·1 answer
  • How are work and power simular?
    12·1 answer
  • A person pushes horizontally with a force of 200. N on a 65.0 kg crate to move it across a level floor. The coefficient of kinet
    7·1 answer
  • 14. How are position and speed useful for describing the motion of an object?
    14·1 answer
  • Which of the following elements is in Group 2?
    8·1 answer
  • Velocity of a body in circular or curved path is variable why give reason<br>only<br>​
    7·1 answer
  • A tourist stands at the top of the Grand Canyon, holding a rock, overlooking the valley
    14·1 answer
  • If velocity is positive, which would most likely yield a negative acceleration?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!