Yes because the heat is to hot and would melt the earth layers so it would go through
Brainiest plz
Explanation:
The US Supreme Court has affirmed in Miller v. Johnson (1995) that racial gerrymandering is a violation of constitutional rights and upheld decisions against redistricting that is purposely devised based on race. However, the Supreme Court has struggled as to when partisan gerrymandering occurs (Vieth v.
<span>The diver is heading downwards at 12 m/s
Ignoring air resistance, the formula for the distance under constant acceleration is
d = VT - 0.5AT^2
where
V = initial velocity
T = time
A = acceleration (9.8 m/s^2 on Earth)
In this problem, the initial velocity is 2.5 m/s and the target distance will be -7.0 m (3.0 m - 10.0 m = -7.0 m)
So let's substitute the known values and solve for T
d = VT - 0.5AT^2
-7 = 2.5T - 0.5*9.8T^2
-7 = 2.5T - 4.9T^2
0 = 2.5T - 4.9T^2 + 7
We now have a quadratic equation with A=-4.9, B=2.5, C=7. Using the quadratic formula, find the roots, which are -0.96705 and 1.477251164.
Now the diver's velocity will be the initial velocity minus the acceleration due to gravity over the time. So
V = 2.5 m/s - 9.8 m/s^2 * 1.477251164 s
V = 2.5 m/s - 14.47706141 m/s
V = -11.97706141 m/s
So the diver is going down at a velocity of 11.98 m/s
Now the negative root of -0.967047083 is how much earlier the diver would have had to jump at the location of the diving board. And for grins, let's compute how fast he would have had to jump to end up at the same point.
V = 2.5 m/s - 9.8 m/s^2 * (-0.967047083 s)
V = 2.5 m/s - (-9.477061409 m/s)
V = 2.5 m/s + 9.477061409 m/s
V = 11.97706141 m/s
And you get the exact same velocity, except it's the opposite sign.
In any case, the result needs to be rounded to 2 significant figures which is -12 m/s</span>
Answer:
The object would weight 63 N on the Earth surface
Explanation:
We can use the general expression for the gravitational force between two objects to solve this problem, considering that in both cases, the mass of the Earth is the same. Notice as well that we know the gravitational force (weight) of the object at 3200 km from the Earth surface, which is (3200 + 6400 = 9600 km) from the center of the Earth:

Now, if the body is on the surface of the Earth, its weight (w) would be:

Now we can divide term by term the two equations above, to cancel out common factors and end up with a simple proportion:
