1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djyliett [7]
3 years ago
6

The life span of a certain insect in days is uniformly distributed over the interval (20,36). What is the probability the insect

will live 24 days or less? Possible Answers a) .24 b) .25 c) .20 d) .75

Mathematics
1 answer:
Kipish [7]3 years ago
5 0

Answer:

  b)  0.25

Step-by-step explanation:

The required probability is ...

  (24 -20)/(36 -20) = 4/16 = 1/4 = 0.25

_____

<em>Comment on the attached graph</em>

The red line is the probability distribution function (pdf) for this uniform distribution. The green line is the cumulative distribution function (cdf) for this uniform distribution. It is the integral of the pdf.

The probability of interest is the value of the cdf at x=24. That value is 0.25, meaning the area under the pdf curve to the left of x=24 is 1/4 of the total area under the pdf curve. That proportion is what is calculated above.

You might be interested in
−2x−(−5−4x)=−5(2x−7)
hoa [83]

Answer:

<em>x = 2.5</em>

Step-by-step explanation:

- 2x - ( - 5 - 4x ) =  - 5 ( 2x - 7 )

- 2x + 5 + 4x = - 10x + 35

- 2x + 5 + 4x = - 10x + 35

- 2x + 4x + 10x = 35 - 5

12x = 30

<em>x = </em>\frac{5}{2}<em> = 2.5</em>

Check the answer:

<em>L.H.S.</em> = - 2(2.5) - [ - 5 - 4(2.5) ] = <em>10</em>

<em>R.H.S.</em> = - 5 [ 2(2.5) - 7 ] = <em>10</em>

6 0
3 years ago
You are given a number. Do you know the number that is 1/5 as big?<br><br> Need answer ASAP ❤️❤️❤️
posledela

Answer:

Step-by-step explanation:

yes,      (given number) / 5

4 0
2 years ago
A stone dropped from a bridge strikes the water 2.2 s later. How high is the bridge above thewater
vivado [14]
Let the only force acting on the ball is the gravity (free-failing)  and the ball was initially stationary
vo = 0

s = vot + 1/2 gt^2

s = 1/2 x 10 x (2.2) ^2 = 24.2 m 
3 0
3 years ago
Read 2 more answers
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
A lawn had an area of 100 square feet. If it was 10 feet width, how long was it?
AleksAgata [21]
10 ft because 10×10=100
3 0
3 years ago
Read 2 more answers
Other questions:
  • ** uestion number 2
    14·1 answer
  • What is the sum of q and 8
    11·2 answers
  • HELP IM ‍♀️ CONFUSED WILL GIVE BRAINLIEST AND 10 points CAN SOMEONE HELP WITH MY HOMEWORK QUESTIONS
    13·2 answers
  • What would you do to isolate the variable in the following equation? 7 = c/2
    10·1 answer
  • An iron ball is bobbing up and down on the end of a spring. The maximum height of the ball is 46 inches and its minimum height i
    6·2 answers
  • What is 25.0996 rounded to the nearest thousandth
    8·1 answer
  • Find x to the nearest tenth
    13·1 answer
  • Paolo purchased a shirt at store A. He paid $19.50 for the shirt. Raoul purchased the same shirt at store B for $22.35.
    14·2 answers
  • Use order of operations: 3^2*5-(6+3)^2
    8·2 answers
  • What is -9+(-6)-7-(-12) simplified?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!