Missing question: <span>Assume a density of 10.35 g/cm3 for Ag, A(Ag) = 107.87 g/mol.
N(Ag) = Na </span>· d(Ag) ÷ A(Ag).
N(Ag) = 6,023·10²³ atoms/mol · 10,35 g/cm³ · 10⁶ cm³/m³ ÷ 107,87 g/mol.
N(Ag) = 5,78·10²⁸ atoms/mol.
Nv = 5,78·10²⁸ atoms/mol · 5·10⁻⁵.
Nv = 2,89·10²².
a region around a magnetic material or a moving electric charge within which the force of magnetism acts.
The F2 molecular orbital diagram shows 4e- are in the highest energy antibonding (destabilizing) molecular orbitals resulting in a bond order = 1.
Single bonds are easier to break and therefore more reactive. So the answer is yes.
Answer:
The amount of CaCl2 produced depends on the amount of HCl in the reaction.
Explanation:
The amount of HCl is used completelyin the reaction unlike CaCO3 which remains after reaction.
Answer:
a. slows diffusion
Explanation:
Gas exchange on respiratory surfaces in the body (the lungs) occurs through a process known as diffusion. Blood which is low in oxygen and high in carbondioxide (carried from cells) goes through an exchange in the lung's alveoli (where oxygen concentration is high and carbondioxide is low). The oxygen in the alveoli diffuses into the blood, while the carbondioxide in the blood diffuses into the alveoli. This diffusion is possible because of the concentration gradient across the membranes.
Pneumonia is the inflammation of the lungs due to injury or infection. Liquid (pus) accumulates in the alveoli (a natural immune response to the infection or injury), a condition known as pulmonary edema which makes it harder for gases to be exchanged between the blood and the alveoli, thereby making breathing difficult. This slows down diffusion and if the condition is severe enough, can cause a respiratory failure where oxygen levels in the blood are critically low and carbondioxide levels are very high.