Answer:
The four characrteristics of warm blooded animals are÷
Explanation:
i=They can keep its body temperature the same no matter what the outside temperature .
ii=They can maintain a constant body temperature.
iii=They obtain energy from food consumption.
iv=They maintain their body temperature higher than environment.
On adding salt.....The boiling temperature increases.....
So ∆t= KB * molality
=O.52*(58/58)/4
= O.52*1/4
= 0.13
So increase is 100+.13=100.13°c
Answer:
<h3>1. B</h3><h3>2. A</h3><h3>3. B</h3><h3>4. B</h3><h3>5. C</h3><h3>I HOPE IT HELPS :) 100% sureness</h3>
Answer:
48%
Explanation:
Based on Gay-Lussac's law, the pressure is directly proportional to the temperature. To solve this question we must assume the temperature increases and all CO2 remains without reaction. The equation is:
P1T2 = P2T1
<em>Where Pis pressure and T absolute temperature of 1, initial state and 2, final state of the gas:</em>
P1 = 10.0atm
T2 = 1420K
P2 = ?
T1 = 730K
P2 = 10.0atm*1420K / 730K
P2 = 19.45 atm
The CO2 reacts as follows:
2CO2 → 2CO+ O2
Where 2 moles of gas react producing 3 moles of gas
Assuming the 100% of CO2 react, the pressure will be:
19.45atm * (3mol / 2mol) = 29.175atm
As the pressure rises just to 24.1atm the moles that react are:
24.1atm * (2mol / 19.45atm) = 2.48 moles of gas are present
The increase in moles is of 0.48 moles, a 100% express an increase of 1mol. The mole percent that descomposes is:
0.48mol / 1mol * 100 = 48%
The volume of a gas is the same as its CONTAINER.
Gases generally has no shape and no definite volume. When a gas is placed in a container, the gas usually takes the shape and the volume of the container, that is, the gas fills up all the available spaces in the container. Thus, the volume of a gas will always be the same as its container. This is in contrast with solids, which have definite shape and volume and liquids, which have definite volume but no fixed shape.