Even tho the object is big it will still Float around like a balloon cause of the gravity in space that's why they hook the rocket-ship into the ground of space
Answer:
power is measured in watts and its the messure of work over time.
Explanation:
I want to say frequencies would be the answer. I could be wrong though. Hope this may have helped!
Answer:
V(t1-t0)
Explanation:
Moving 'uniformly' means constant velocity (speed). the formula for constant speed motion is
=( change in position/ change in time)
where,
V is speed
given in the statement :
change in time = t = t1-t0
let the constant speed be ' V '
disance = X = X1-X0
applying the above mentioned formula: V = 
V = X/t
X = Vt
the distance X1-X0 = Vt =V(t1-t0)
Solution
distance travelled by Chris
\Delta t=\frac{1}{3600}hr.
X_{c}= [(\frac{21+0}{2})+(\frac{33+21}{2})+(\frac{55+47}{2})+(\frac{63+55}{2})+(\frac{70+63}{2})+(\frac{76+70}{2})+(\frac{82+76}{2})+(\frac{87+82}{2})+(\frac{91+87}{2})]\times\frac{1}{3600}
=\frac{579.5}{3600}=0.161miles
Kelly,
\Delta t=\frac{1}{3600}hr.
X_{k}=[(\frac{24+0}{2})+(\frac{3+24}{2})+(\frac{55+39}{2})+(\frac{62+55}{2})+(\frac{71+62}{2})+(\frac{79+71}{2})+(\frac{85+79}{2})+(\frac{85+92}{2})+(\frac{99+92}{2})+(\frac{103+99}{2})]\times\frac{1}{3600}
=\frac{657.5}{3600}
\Delta X=X_{k}-X_{C}=0.021miles