Answer:
Explanation:
Given,
- Work done by the rope 900 m/s.
- Angle of inclination of the slope =

- Initial speed of the skier = v = 1.0 m/s
- Length of the inclined surface = d = 8.0 m
part (a)
The rope is doing the work against the gravity on the skier to uplift up to the inclined surface. Therefore the work done by the rope is equal to the work done on the skier due to the gravity

In both cases the height attained by the skier is equal. and the work done by gravity does not depend upon the speed of the skier.
part (b)
- Initial speed of the skier = v = 1.0 m/s.
Rate of the work done by the rope is power of the rope.

Part (c)
- Initial speed of the skier = v = 2.0 m/s.
Rate of the work done by the rope is power of the rope.

Answer:
a) v = 0.7071 v₀, b) v= v₀, c) v = 0.577 v₀, d) v = 1.41 v₀, e) v = 0.447 v₀
Explanation:
The speed of a wave along an eta string given by the expression
v = 
where T is the tension of the string and μ is linear density
a) the mass of the cable is double
m = 2m₀
let's find the new linear density
μ = m / l
iinitial density
μ₀ = m₀ / l
final density
μ = 2m₀ / lo
μ = 2 μ₀
we substitute in the equation for the velocity
initial v₀ =
with the new dough
v =
v = 1 /√2 \sqrt{ \frac{T_o}{ \mu_o} }
v = 1 /√2 v₀
v = 0.7071 v₀
b) we double the length of the cable
If the cable also increases its mass, the relationship is maintained
μ = μ₀
in this case the speed does not change
c) the cable l = l₀ and m = 3m₀
we look for the density
μ = 3m₀ / l₀
μ = 3 m₀/l₀
μ = 3 μ₀
v =
v = 1 /√3 v₀
v = 0.577 v₀
d) l = 2l₀
μ = m₀ / 2l₀
μ = μ₀/ 2
v =
v = √2 v₀
v = 1.41 v₀
e) m = 10m₀ and l = 2l₀
we look for the density
μ = 10 m₀/2l₀
μ = 5 μ₀
we look for speed
v =
v = 1 /√5 v₀
v = 0.447 v₀
When visible light, X rays, gamma rays, or other forms of electromagnetic radiation are shined on certain kinds of matter, electrons are ejected. That phenomenon is known as the photoelectric effect. The photoelectric effect was discovered by German physicist Heinrich Hertz (1857–1894) in 1887. You can imagine the effect as follows: Suppose that a metal plate is attached by two wires to a galvanometer. (A galvanometer is an instrument for measuring the flow of electric current.) If light of the correct color is shined on the metal plate, the galvanometer may register a current. That reading indicates that electrons have been ejected from the metal plate. Those electrons then flow through the external wires and the galvanometer. HOPE THIS HELPED
Answer: Choose the normal force acting between the object and the ground. Let's assume a normal force of 250 N.
Determine the friction coefficient.
Multiply these values by each other: 250 N * 0.13 = 32.5 N .
You just found the force of friction!
Explanation:
You just multiply these two numbers, it's 1250J