Answer:
The kinetic energy of the proton at the end of the motion is 1.425 x 10⁻¹⁶ J.
Explanation:
Given;
initial velocity of proton,
= 3 x 10⁵ m/s
distance moved by the proton, d = 3.5 m
electric field strength, E = 120 N/C
The kinetic energy of the proton at the end of the motion is calculated as follows.
Consider work-energy theorem;
W = ΔK.E

where;
K.Ef is the final kinetic energy
W is work done in moving the proton = F x d = (EQ) x d = EQd




Therefore, the kinetic energy of the proton at the end of the motion is 1.425 x 10⁻¹⁶ J.
A good heat insulator absorbs all, or almost all, of the heat energy
from any heat that flows through it.
A good electrical insulator absorbs all, or almost all, of the energy
from any electric current that flows through it.
1) Ecology
2) Food Web
3) Trophic Level
4) Producer
5) Autotroph
6) Consumer
7) Heterotroph
8) Decomposer
Hope tHis Helps ._.
Momentum is mass times velocity. So here we can just substitute in our givens and solve for velocity.
.600kg*m/s/.350kg=1.71m/s
Hope this helps! Thank you!