Answer:

Explanation:
We are given that
Initial kinetic energy of an electron=K
Distance=d
Final velocity=v=0
Charge,q=-1e
We have to find the magnitude of electric field.
Work done=
Using the formula
Work done=
Using work energy theorem
Work done=Final K.E-Initial K.E=0-K
Work done=-K
Substitute the values
-K=-eEd
K=eEd

Hence, the magnitude of the electric field=
Answer:
78.4 m
Explanation:
Using newton's equation of motion,
S = ut + 1/2gt²......................... Equation 1
Where S = Height, t = time, u = initial velocity, g = acceleration due to gravity.
Note: Taking upward to be negative, and down ward positive
Given: u = 49 m/s, t = 2.0 s, g = -9.8 m/s²
Substitute into equation 1
S = 49(2) - 1/2(9.8)(2)²
S = 98 - 19.6
S = 78.4 m
Hence the height of the ball two seconds later = 78.4 m
Answer:
It is b for sure.
Explanation:
because they are examining urine now that's pure science.
Answer:
E = 3.54 x 10⁻¹⁹ J
Explanation:
The energy of the photon can be given in terms of its wavelength by the use of the following formula:

where,
E = energy = ?
h = Plank's Constant = 6.626 x 10⁻³⁴ Js
c = speed of light = 2.998 x 10⁸ m/s
λ = wavelength of light = 560.6 nm = 5.606 x 10⁻⁷ m
Therefore,

<u>E = 3.54 x 10⁻¹⁹ J</u>
Given the temperature, we can tell if the substance is cold or not relative to the reference temperature. For example, compared to the substance having a temperature of 15 degrees C, the substance is colder and it is hotter from the substance of temperature lesser than 12 degrees C.