Answer:
A) Concentration of A left at equilibrium of we started the reaction with [A] = 2.00 M and [B] = 2.00 M is 0.55 M.
B) Final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M is 0.90 M.
[D] = 0.90 M
Explanation:
With the first assumption that the volume of reacting mixture doesn't change throughout the reaction.
This allows us to use concentration in mol/L interchangeably with number of moles in stoichiometric calculations.
- The first attached image contains the correct question.
- The solution to part A is presented in the second attached image.
- The solution to part B is presented in the third attached image.
Answer: E = 941738.537J
Explanation:
to begin,
given that the mass = 2320 pound = 1052.334 kg
Δh = 110 ft = 33.528 m
given that distance (d) = 1283 ft = 391.058 m
also the speed (v) is 65 mph = 29.058 m/s
force (F) = 87 pounds = 386.995 N
from our knowledge in work energy theory;
E = Fd + 1/2mv² + mgh
E = (386.995 × 391.058) + (1/2×1052.334×29.058²) + (1052.334×9.81×33.528)
E = 151337.491 + 444278.2 + 346122.84
E = 941738.537J
i hope this helps, cheers.
The heat required to change 1.25 kg of steak is 2825 kJ /kg.
<u>Explanation</u>:
Given, mass m = 1.25 kg, Temperature t = 100 degree celsius
To calculate the heat required,
Q = m
L
where m represents the mass in kg,
L represents the heat of vaporization.
When a material in the liquid state is given energy, it changes its phase from liquid to vapor and the energy absorbed in this process is called heat of the vaporization. The heat of vaporization of the water is about 2260 kJ/kg.
Q = 1.25
2260
Q = 2825 kJ /kg.
Answer:
Uncertainty in position of the bullet is 
Explanation:
It is given that,
Mass of the bullet, m = 35 g = 0.035 kg
Velocity of bullet, v = 709 m/s
The uncertainty in momentum is 0.20%. The momentum of the bullet is given by :


Uncertainty in momentum is,


We need to find the uncertainty in position. It can be calculated using Heisenberg uncertainty principal as :




Hence, this is the required solution.
Answer:
When a cyclone continues to be out over the ocean, the winds and huge waves that area unit created by the storm become dangerous for ships and alternative water vessels. ... once the cyclone approaches land it will cause an enormous quantity of injury. Flooding caused by storm surges is one among the foremost dangerous components of a cyclone.