Huh ?!?!?? What does that mean? Can I have brainliest I need one more for my next stage/level
Answer:
v = 4.58 m/s
Explanation:
In order to calculate the speed of the skier when she gets the bottom of the hill, you have to calculate the speed of the skier when she crosses the rough patch.
To calculate the velocity at the final of the rough patch you take into account that the work done by the friction surface is equal to the change in the kinetic energy of the skier:
(1)
Where the minus sign means that the work is against the motion of the skier.
Wf: friction force
m: mass of the skier = 65.0kg
N: normal force = mg
g: gravitational acceleration = 9.8m/s^2
d: distance of the rough patch = 4.00m
v: speed at the end of the rough patch = ?
vo: initial speed of the skier = 6.85m/s
μk: coefficient of kinetic friction = 0.330
You replace the expression for the normal force in the equation (1), and solve for v:

Then, the speed fot he skier at the bottom of the hill is 4.58m/s
Answer:
Required heat Q = 11,978 KJ
Explanation:
Given:
Mass = 5.3 kg
Latent heat of vaporization of water = 2,260 KJ / KG
Find:
Required heat Q
Computation:
Required heat Q = Mass x Latent heat of vaporization of water
Required heat Q = 5.3 x 2260
Required heat Q = 11,978 KJ
Required heat Q = 12,000 KJ (Approx.)
From the momentum conservation we know that the initial momentum is equal to the final momentum. The momentum in a singular way can be defined as the product between the mass and the velocity of an object. In the presented system, however, there are two objects, therefore the mass of both and the speed of both, before and after the collision must be taken into account. Mathematically we could describe this as

Here,
= Mass of each object
= Initial velocity of each object
= Final velocity of each object
From here we can realize that it is necessary to use the system on both cars to be able to predict what will happen either with their masses, or their speeds.
The correct answer is C.
Answer:
f = 130 Khz
Explanation:
In a circuit driven by a sinusoidal voltage source, there exists a fixed relationship between the amplitudes of the current and the voltage through any circuit element, at any time.
For an inductor, this relationship can be expressed as follows:
VL = IL * XL (1) , which is a generalized form of Ohm's Law.
XL is called the inductive reactance, and is defined as follows:
XL = ω*L = 2*π*f*L, where f is the frequency of the sinusoidal source (in Hz) and L is the value of the inductance, in H.
Replacing in (1), by the values given of VL, IL, and L, we can solve for f, as follows:
f = VL / 2*π*IL*L = 12 V / 2*π*(3.00*10⁻³) A* (4.9*10⁻³) H = 130 Khz