The wavelength of the radio waves is 3.04 cm.
<h3>Calculation:</h3>
λf = c
λ = c/f
where,
λ = wavelength
c = speed of light
f = frequency
Given,
f = 98.6 MHz = 98.6 × 10⁶
c = 3 × 10⁸
To find,
λ =?
Put the values in the formula,
λ = c/f
λ = 3 × 10⁸/98.6 × 10⁶
= 0.0304 × 10² m
= 3.04 cm
Therefore, the wavelength of the radio waves is 3.04 cm.
Learn more about the calculation of wavelength here:
brainly.com/question/8422432
#SPJ4
Answer:
115 kPa
Explanation:
Use Bernoulli equation:
P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂
Assuming no elevation change, h₁ = h₂.
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²
Plugging in values:
(582,000 Pa) + ½ (1000 kg/m³) (1.28 m/s)² = P + ½ (1000 kg/m³) (30.6 m/s)²
P = 115,000 Pa
P = 115 kPa
Explanation:
Given that,
Size of object, h = 0.066 m
Object distance from the lens, u = 0.210 m (negative)
Focal length of the converging lens, f = 0.14 m
If v is the image distance from the lens, we can find it using lens formula as follows :
(a) Magnification,

(b) Magnification, 
h' is image height

Hence, this is the required solution.
Answer:
37.34372 kg
Explanation:
m = Mass
= Change in temperature
1 denotes water
2 denotes copper
c = Heat capacity
Heat is given by

In this case the heat transfer will be equal

Mass of copper block is 37.34372 kg
Answer:
Angular acceleration, is 
Explanation:
Given that,
Initial speed of the drill, 
After 4.28 s of constant angular acceleration it turns at a rate of 28940 rev/min, final angular speed, 
We need to find the drill’s angular acceleration. It is given by the rate of change of angular velocity.

So, the drill's angular acceleration is
.