Kinetic energy is the energy possessed by an object on motion. it is expressed as follows:
KE = 0.5mv^2
where m is the mass and v is the velocity of the object. We calculate as follows:
KE = 0.5mv^2
1.1x10^9 J = 0.5(8.0x10^4 kg) v^2
v = 165.83 m/s
#1.
<em>Car </em>1<em> weighs </em>300 kilograms<em> and is moving right at </em>3 meters per second (m/s)
#2.
Law of conservation of momentum
momentum before collorion = momentim after collosion
MV + mv = MV' + mv'
1500x25+ 1000x5
37500 + 15000
Answer:
The 10 kg rock has more inertia than the other two rocks.
Explanation
Answer:
Explanation:
Given
distance traveled by Passenger train is 
distance traveled by Freight train is 
Both take same time to travel
suppose speed of freight train is x mph
so speed of passenger train is 20+x mph
we know time




speed of passenger train
Answer:
ee that the lens with the shortest focal length has a smaller object
Explanation:
For this exercise we use the constructor equation or Gaussian equation
where f is the focal length, p and q are the distance to the object and the image respectively.
Magnification a lens system is
m =
= -
h ’= -\frac{h q}{p}
In the exercise give the value of the height of the object h = 0.50cm and the position of the object p =∞
Let's calculate the distance to the image for each lens
f = 6.0 cm

as they indicate that the light fills the entire lens, this indicates that the object is at infinity, remember that the light of the laser rays is almost parallel, therefore p = inf
q = f = 6.0 cm
for the lens of f = 12.0 cm q = 12.0 cn
to find the size of the image we use
h ’= h q / p
where p has a high value and is the same for all systems
h ’= h / p q
Thus
f = 6 cm h ’= fo 6 cm
f = 12 cm h ’= fo 12 cm
therefore we see that the lens with the shortest focal length has a smaller object