Answer : The pH will be, 3.2
Explanation :
As we known that the value of solubility constant of ferric hydroxide at
is, 
Amount or solubility of iron consumed = (1.800 - 0.3) mg/L = 1.5 mg/L
The given solubility of iron convert from mg/L to mol/L.

The chemical reaction will be:

The expression of solubility constant will be:
![K_{sp}=[Fe^{3+}]\times [3OH^-]^3](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BFe%5E%7B3%2B%7D%5D%5Ctimes%20%5B3OH%5E-%5D%5E3)
Now put all the given values in this expression, we get the concentration of hydroxide ion.
![2.79\times 10^{-39}=(2.7\times 10^{-7})\times [3OH^-]^3](https://tex.z-dn.net/?f=2.79%5Ctimes%2010%5E%7B-39%7D%3D%282.7%5Ctimes%2010%5E%7B-7%7D%29%5Ctimes%20%5B3OH%5E-%5D%5E3)
![[OH^-]=1.5\times 10^{-11}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.5%5Ctimes%2010%5E%7B-11%7DM)
Now we have to calculate the pOH.
![pOH=-\log [OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%20%5BOH%5E-%5D)


Now we have to calculate the pH.

Therefore, the pH will be, 3.2
Answer:
unknown fact I can't message anyone
In an ionic bond, electrons are transferred from one stone to another atom (shared).
Electronegativity is related to covalent bonding because when two atoms have the same electronegativity bond, they will form a pure covalent bond.
Answer: 0.25 mol
Explanation:
Use the formula n=N/NA
n= number of mols
N = number of particles
Nᵃ = Avogadros constant = 6.02 x
So, n=
The 10 to the power of 23 cancels out and you are left with 1.505/6.02, which is approximately 1/4. This is the same as 0.25 mol.
Hope this helped :)