Answer:
the electric field at Z = 12 cm is E = 9.68 × 10³ N/C = 9.68 kN/C
Explanation:
Given: radius of disk, R = 2.0 cm = 2 × 10⁻² cm, surface charge density,σ = 6.3 μC/m² = 6.3 × 10⁻⁶ C/m², distance on central axis, z = 12 cm = 12 × 10⁻² cm.
The electric field, E at a point on the central axis of a charged disk is given by E = σ/ε₀(
)
Substituting the values into the equation, it becomes
E = σ/ε₀(
) = 6.3 × 10⁻⁶/8.854 × 10⁻¹²(
) = 7.12 × 10⁵(
) = 7.12 × 10⁵(1 - 0.9864) = 7.12 × 10⁵ × 0.0136 = 0.0968 × 10⁵ = 9.68 × 10³ N/C = 9.68 kN/C
Therefore, the electric field at Z = 12 cm is E = 9.68 × 10³ N/C = 9.68 kN/C
The pressure of the gas is expected to increase in accordance to Boyle's law.
<h3>What is Boyle's law?</h3>
Boyle's law states that, the volume of a given mass of gas is inversely proportional to its pressure at constant temperature.
By implication, when the piston is lowered and the volume of the gas is decreased, the pressure of the gas is expected to increase in accordance to Boyle's law.
Learn more about Boyle's law: brainly.com/question/1437490
1) As can be seen from any 1H NMR chemical shift ppm tables, hydrogens which have δ values from 2ppm to 2.3ppm are hydrogens from carbon which is bonded to a carbonyl group. From this, we can conclude that our hydrogens belong to the type, but from 2 different alkyl groups because of 2 different signals.
2) So, one alkyl group is CH3 and second one can be CH or CH2.
3) If we know that ratio between two types of hydrogens is 3:2, it can be concluded that second alkyl group is CH2.
4) Finally, we don't have any other signals and it indicates that part of the compound which continues on CH2 is exactly the same as the first part.
The ratio remains the same, 3:2 ie 6:4