Answer:
I don’t understand Espanol
Explanation:
sorry
Answer:
V₀ = 5.47 m/s
Explanation:
The jumping motion of the Salmon can be modelled as the projectile motion. So, we use the formula for the range of projectile motion here:
R = V₀² Sin 2θ/g
where,
R = Range of Projectile = 3.04 m
θ = Launch Angle = 41.7°
V₀ = Minimum Launch Speed = ?
g = 9.81 m/s²
Therefore,
3.04 m = V₀² [Sin2(41.7°)]/(9.81 m/s²)
V₀² = 3.04 m/(0.10126 s²/m)
V₀ = √30.02 m²/s²
<u>V₀ = 5.47 m/s</u>
<span>37.8 seconds
First, determine the speed difference between the car and truck.
95 km/h - 75 km/h = 20 km/h
Convert that speed into m/s to make a more convenient unit of measure.
20 km/h * 1000 m/km / 3600 s/h = 5.556 m/s
Now it's simply a matter of dividing the distance between the two vehicles and their relative speed.
210 m / 5.556 m/s = 37.8 s
So it will take 37.8 seconds for the car to catch the truck that's 210 meters in front of the car.</span>
Bike
because it involves lots of angular mechanics that allow it to balance itself when moving.
all other examples have a constant force being applied into the system which is very easy to formulate, therefore they are simple machines.
Answer:
The forces could be gravity, friction between the car and the ground, the force Katie is applying and the normal reaction.