The body shivers to produce energy and it uses the energy to keep it warm. The body would stop shivering when it has produced enough energy to keep it warm and the atmosphere around it has got warmer
Answer:
<em>The PE of the mass increased by 6,972.95 J</em>
Explanation:
<u>Gravitational Potential Energy</u>
It's the energy stored in an object because of its vertical position or height in a gravitational field.
It can be calculated with the equation:
U=m.g.h
Where m is the mass of the object, h is the height with respect to a fixed reference, and g is the acceleration of gravity or 9.8 m/s^2.
We are given the mass of m=16 slug raised by a height h=10 ft. Both units will be converted to SI standard:
1 slug = 14.59 Kg, thus
16 slug = 16*14.59 Kg=233.44 Kg
1 ft = 0.3048 m, thus:
10 ft = 10*0.3048 m = 3.048 m
Thus, the PE of the mass increased by:
U = 233.44 * 9.8 * 3.048 = 6,972.95 J
the PE of the mass increased by 6,972.95 J
Answer:
Explanation:
We shall apply law of conservation of momentum to know velocity after collision . Let it be v .
total momentum before collision = total momentum after collision
15 x 1.5 - 12 x .75 = ( 15 + 12 ) v
v = .5 m /s
kinetic energy before collision
1/2 x 15 x 1.5² + 1/2 x 12 x .75²
= 16.875 + 3.375
= 20.25 J
kinetic energy after collision
= 1/2 x ( 15 + 12 ) x .5²
= 3.375 J
Loss of energy = 16.875 J
This energy appear as heat and sound energy that is produced during collision .
i think its iron...
<span>Presence of trace elements, irradiation and iron impurities give the gem its purplish color .
:))
merry christmas</span>
Options
a. The worker carried the lunch up to the 53rd floor in the elevator.
b. The worker got a ride in a helicopter to the top of the 68-floor building and then carried the lunch down in the elevator to the 53rd floor?
c. The Worker carried it up the stairs to the 53rd floor.
d. Gravitational potential energy does not depend on the path taken.
Answer:
The gravitational Energy would remain the same in all cases.
Explanation:
Gravitational Energy is a conservative energy and its potential energy comes from gravitational actions.
An instance is when someone lifts a weight from the floor to a certain height and then dropped the weight back to the floor; the work done by the field will not be altered at all; it'll be the same throughout.
If otherwise, it'll be against thermodynamics 2nd law of physics because the object would have remaining energy after returning to the starting point,
For this reason, the gravitational potential energy only depends from the height, and is independent from the path taken to reach there.