1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adelina 88 [10]
3 years ago
9

How much power is needed to lift the 200-N object to a height of 10 m in 4 s?

Physics
1 answer:
harkovskaia [24]3 years ago
6 0

Answer:

500 watts

Explanation:

Recall that the definition of power is the amount of energy delivered per unit of time.

In our case, the energy delivered is potential energy which we can estimate as the product of the weight of the object times the distance it is lifted above ground:

200 N x 10 m = 2000  Nm

then the power is the quotient of this potential energy divided the time it took to lift the object to that position:

Power = 2000 / 4   Nm/s = 500 Nm/s = 500 watts

You might be interested in
g A change in the initial _____ of a projectile changes the range and maximum height of the projectile.​
docker41 [41]

Answer:

Velocity.

Explanation:

Projectile motion is characterized as the motion that an object undergoes when it is thrown into the air and it is only exposed to acceleration due to gravity.

As per the question, 'any change in the initial velocity of the projectile(object having gravity as the only force) would lead to a change in the range as well as the maximum height of the projectile.' To illustrate numerically:

Horizontal range: As per expression:

R= (u^{2}*sin2θ)/g

the range depending on the square of the initial velocity.

Maximum height: As per expression:

H= (u^{2} * sin^{2}θ )/2g

the maximum distance also depends upon square of the initial velocity.

​

​

​

7 0
3 years ago
PLEASE HELP!! Lab: Electromagnetic Induction
Advocard [28]

I am not sure what this is

5 0
2 years ago
Read 2 more answers
What is meant in astronomy by the phrase "adaptive optics?
Sergeu [11.5K]
<h2>Answer: a.The mirrors and eyepiece of a large telescope are spring-loaded to allow them to return quickly to a known position. </h2>

Explanation:

Adaptive optics is a method used in several astronomical observatories to counteract in real time the effects of the Earth's atmosphere on the formation of astronomical images.

This is done through the insertion into the optical path of the telescope of sophisticated deformable mirrors supported by a set of computationally controlled actuators. Thus obtaining clear images despite the effects of atmospheric turbulence that cause the unwanted distortion.

It should be noted that with this technique it is also necessary to have a moderately bright reference star that is very close to the object to be observed and studied. However, it is not always possible to find such stars, so a powerful laser beam is used to point towards the Earth's upper atmosphere and create artificial stars.

7 0
3 years ago
A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is r
atroni [7]

(a) 2.79 rev/s^2

The angular acceleration can be calculated by using the following equation:

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

where:

\omega_f = 20.0 rev/s is the final angular speed

\omega_i = 11.0 rev/s is the initial angular speed

\alpha is the angular acceleration

\theta=50.0 rev is the number of revolutions made by the disk while accelerating

Solving the equation for \alpha, we find

\alpha=\frac{\omega_f^2-\omega_i^2}{2d}=\frac{(20.0 rev/s)^2-(11.0 rev/s)^2}{2(50.0 rev)}=2.79 rev/s^2

(b) 3.23 s

The time needed to complete the 50.0 revolutions can be found by using the equation:

\alpha = \frac{\omega_f-\omega_i}{t}

where

\omega_f = 20.0 rev/s is the final angular speed

\omega_i = 11.0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

t is the time

Solving for t, we find

t=\frac{\omega_f-\omega_i}{\alpha}=\frac{20.0 rev/s-11.0 rev/s}{2.79 rev/s^2}=3.23 s

(c) 3.94 s

Assuming the disk always kept the same acceleration, then the time required to reach the 11.0 rev/s angular speed can be found again by using

\alpha = \frac{\omega_f-\omega_i}{t}

where

\omega_f = 11.0 rev/s is the final angular speed

\omega_i = 0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

t is the time

Solving for t, we find

t=\frac{\omega_f-\omega_i}{\alpha}=\frac{11.0 rev/s-0 rev/s}{2.79 rev/s^2}=3.94 s

(d) 21.7 revolutions

The number of revolutions made by the disk to reach the 11.0 rev/s angular speed can be found by using

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

where:

\omega_f = 11.0 rev/s is the final angular speed

\omega_i = 0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

\theta=? is the number of revolutions made by the disk while accelerating

Solving the equation for \theta, we find

\theta=\frac{\omega_f^2-\omega_i^2}{2\alpha}=\frac{(11.0 rev/s)^2-0^2}{2(2.79 rev/s^2)}=21.7 rev

4 0
3 years ago
If the wave represents a sound wave, explain how increasing amplitude will affect the loudness of the sound? If we decrease the
Viktor [21]

Answer:

Explanation:

Think of a sound wave like a wave on the ocean, or lake... It's not really water moving, as much as it's energy moving through the water. Ever see something floating on the water, and notice that it doesn't come in with the wave, but rides over the top and back down into the trough between them? Sound waves are very similar to that. If you looked at a subwoofer speaker being driven at say... 50 cycles a second, you'd actually be able to see the speaker cone moving back and forth. The more power you feed into the speaker, the more it moves back and forth, not more quickly, as that would be a higher frequency, but further in and further out, still at 50 cycles per second. Every time it pushed out, it's compressing the air in front of it... the compressed air moves away from the speaker's cone, but not as a breeze or wind, but as a wave through the air, similar to a wave on the ocean

More power, more amplitude, bigger "wave", louder ( to the human ear) sound.

If you had a big speaker ( subwoofer ) and ran a low frequency signal with enough power in it, you could hold a piece of paper in front of it, and see the piece of paper move in and out at exactly the same frequency as the speaker cone. The farther away from the speaker you got, the less it'd move as the energy of the sound wave dispersed through the room.

Sound is a wave

We hear because our eardrums resonates with this wave I.e. our ear drums will vibrate with the same frequency and amplitude. which is converted to an electrical signal and processed by our brain.

By increasing the amplitude our eardrums also vibrate with a higher amplitude which we experience as a louder sound.

Of course when this amplitude is too high the resulting resonance tears our eardrums so that they can't resonate with the sound wave I.e. we become deaf

6 0
2 years ago
Other questions:
  • What characteristics do all minerals share
    5·1 answer
  • Albert observes that Emmy's watch is ticking eanwhile, Emmy observes Albert's watch and compares it with her watch. Emmy observe
    6·1 answer
  • In which of these situations, is mechanical energy being conserved? (Neglect, air resistance, friction, and breaking) Check all
    14·1 answer
  • An object at rest increases its velocity to 10m/s in 3 seconds. What is its acceleration
    15·1 answer
  • A player bounces a basketball on the floor, compressing it to 80.0 % of its original volume. The air (assume it is essentially N
    6·2 answers
  • Which steps can be taken to translate the phrase “the height of a tree is increased by seven inches” into an algebraic expressio
    13·2 answers
  • What are the steps and structures involved in the process of cellular respiration?
    5·2 answers
  • The United States and South Korean soccer teams are playing in the first round of the World Cup. An American kicks the ball, giv
    13·1 answer
  • For variables control, a circuit voltage will be measured using a sample of five circuits. The past average voltage for samples
    7·1 answer
  • 1. Who explained the motions of the planets of the solar system at the same
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!