Explanation:
Magnet: It has two poles: South pole and North pole.
Magnetic field lines are stronger near the poles of the magnet.
Same poles repel each other. There is a magnetic force of repulsion between the same poles. North- North poles repel each other.
Unlike poles attract each other. There is magnetic force of attraction between the opposite poles. South- North poles attract each other.
Mono poles cannot exist.
From the given statements, the magnetic poles are described by:
A north pole must exist with a south pole.
Two south poles placed near each other will repel each other.
A north pole and a south pole placed near each other will attract each other.
Ruff's image is 50m behind the mirror surface and the image is also 3m tall.
This is because it is a plane mirror.
The force of gravity between Earth and Mars will decrease.
The gravitational law is given as-
F = G mM/r²
here, m= mass of rocket
M = mass of earth
r = distance between earth and rocket
So, as rocket takes off from earth and fly towards mars then the distance starts to increase between earth and rocket, and the gravitational pull between them starts to weaken. Then a point will reach when rocket will far from gravity of earth and could probably enter the gravity of Mars.
Learn more about gravitational law here:
brainly.com/question/12101547
#SPJ4
Answer:
Explanation:
Given that,
At one instant,
Center of mass is at 2m
Xcm = 2m
And velocity =5•i m/s
One of the particle is at the origin
M1=? X1 =0
The other has a mass M2=0.1kg
And it is at rest at position X2= 8m
a. Center of mass is given as
Xcm = (M1•X1 + M2•X2) / (M1+M2)
2 = (M1×0 + 0.1×8) /(M1 + 0.1)
2 = (0+ 0.8) /(M1 + 0.1)
Cross multiply
2(M1+0.1) = 0.8
2M1 + 0.2 =0.8
2M1 = 0.8-0.2
2M1 = 0.6
M1 = 0.6/2
M1 = 0.3kg
b. Total momentum, this is an inelastic collision and it momentum after collision is given as
P= (M1+M2)V
P = (0.3+0.1)×5•i
P = 0.4 × 5•i
P = 2 •i kgm/s
c. Velocity of particle at origin
Using conversation of momentum
Momentum before collision is equal to momentum after collision
P(before) = M1 • V1 + M2 • V2
We are told that M2 is initially at rest, then, V2=0
So, P(before) = 0.3V1
We already got P(after) = 2 •i kgm/s in part b of the question
Then,
P(before) = P(after)
0.3V1 = 2 •i
V1 = 2/0.3 •i
V1 = 6 ⅔ •i m/s
V1 = 6.667 •i m/s
"A pitcher throws a baseball, and then the batter hits a homerun" is the one among the following choices given in the question that <span>best represents potential energy being converted to kinetic energy. The correct option among all the options that are given in the question is the second option or option "2". </span>