D = (1/2)·at²
where d is the distance fallen, a is the acceleration (g in this problem), and t is the time
d = (1/2)·(9.8 m/s²)·(30 s)² = (1/2)·(9.8)·(900) m
d = 4410 m
The answer is b) 4410 m
Note: the mass of the raindrop is irrelevant since the acceleration due to gravity is independent of mass. (Galileo's Leaning Tower of Pisa experiment)
Do you speak a little English cuz I can’t help you if a can’t understand you
Answer:
Blood is a homogenous mixture
Answer:
the needle will direct its North South according to the magnetic field of current carrying wire.
Explanation:
A current carrying wire always has a magnetic field around it, in circular loops. This magnetic field will be either clockwise or anticlockwise depending on the direction of current.
Right hand rule tells the direction. Place the current carrying wire in your right hand with thumb pointing the direction of current. Curl of the fingers tell the direction of current.
When the needle gets in the vicinity of the field, its poles aligns itself with the field. (previous position of the compass needle has no effect on its position in the field). The north pole and south pole will be set in the direction of magnetic field.
The distance between the needle and wire does effect the strength (accuracy) of the needle position. Strong field will create strong deflection of the needle whereas when the distance from wire increases, field weakens, thus the deflection of needle will be weak.