The correct answer for the question that is being presented above is this one:
Given that:
delta Tb = Kbm Kb H2O = 0.52 degrees C/m
<span>delta Tf = Kfm Kf H2O = 1.86 degrees C/m
</span>
We need to know the formula for Molality.
molality = mol solute / kg solvent
<span>We are given the amount of solute in grams
Since amount of solute is given in moles, we have to convert 25 g NaCl to moles. Divide by molar mass. </span>
<span>25 g NaCl / 58.5 g/mol = 0.427 mol </span>
<span>Then, use the formula for molality. </span>
<span>molality = mol solute / kg solvent </span>
<span>= 0.427 / 1 </span>
<span>= 0.427 m </span>
<span>Use now the formula to get the boiling point.</span>
<span>delta Tb = Kbm </span>
<span>= (0.52)(0.427) </span>
<span>= 0.22C </span>
Answer:
A true
Explanation:
Bald eagles have white heads distinguishing them from the rest of their body(which is dark brown
The sand provides a rough surface on top of the ice for the cars' tires to grip onto. It provides more friction. Salt melts the ice and often provides more friction (the disadvantage is that it eats concrete!).
Answer:
C.)One electron in each p orbital
Explanation:
In a P-sublevel with 3 electrons, they should be arranged with one electron going into each p-orbitals.
This is in accordance with the Hund's rule of maximum multiplicity.
The rule states that "electrons go into degenerate orbitals or sub-levels(p,d and f) singly before paring up".
Since the p-orbital is 3-fold degenerate with a capacity to accommodate a maximum number of 6 electrons, given 3 electrons, they will follow the Hund's rule in order to fill the orbitals.
So one electron will go in each p - orbitals easily.