The protons and electrons are held in place on the x axis.
The proton is at x = -d and the electron is at x = +d. They are released at the same time and the only force that affects movement is the electrostatic force that is applied on both subatomic particles. According to Newton's third law, the force Fpe exerted on protons by the electron is opposite in magnitude and direction to the force Fep exerted on the electron by the proton. That is, Fpe = - Fep. According to Newton's second law, this equation can be written as
Mp * ap = -Me * ae
where Mp and Me are the masses, and ap and ae are the accelerations of the proton and the electron, respectively. Since the mass of the electron is much smaller than the mass of the proton, in order for the equation above to hold, the acceleration of the electron at that moment must be considerably larger than the acceleration of the proton at that moment. Since electrons have much greater acceleration than protons, they achieve a faster rate than protons and therefore first reach the origin.
Answer:
Gravity.
Rocket ships.
Ball.
Basketball.
Explanation:
Gravity has to do a lot with air. It puts the planets in there area.
Rocket Ship has to do a lot with air. If i'm right, they calculate the area, weather, about the air.
A ball gets throwed in the air, which gravity comes into place.
Basketball is also a similar example to a ball.
You could get sick by breathing throw your mouth and you have a less chance of getting sick by breathing throw your nose.
The electric force between two charge objects is calculated through the Coulomb's law.
F = kq₁q₂/d²
The value of k is 9.0 x 10^9 Nm²/C² and the charge of proton is 1.602 x10^-19 C. Substituting the known values from the given,
2.30x10^-26 = (9.0 x 10^9 Nm²/C²)(1.602 x10^-19C)²/d²
The value of d is equal to 0.10 m.