Answer:
The increasing order of conductivity is O< Ge< Mn.
Explanation:
Electrical conductivity is defined as the measure of the ability of a material to conduct electrical current through it. The conductivity depends on the atomic and molecular structure of the material.
Metals are good conductors because they have a structure with many electrons with weak bonds, and this allows their movement instead non-metals have between four and eight valence electrons, which lack this tendency.
The conductivity increases in the periodic table from top to bottom and from right to left.
oxygen is a nonmetal therefore it is a bad conductor.
Germanium is a metalloid whose conductivity is greater than a nonmetal and worst than a metal.
Manganese is a metal,in this case, it is a good conductor.
It is a mixture. it can easily be separated.
Answer: The concentration of KOH for the final solution is 0.275 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.

where,
n = moles of solute
= volume of solution in ml = 150 ml
moles of solute =
Now put all the given values in the formula of molality, we get

According to the dilution law,

where,
= molarity of stock solution = 1.19 M
= volume of stock solution = 15.0 ml
= molarity of diluted solution = ?
= volume of diluted solution = 65.0 ml
Putting in the values we get:


Therefore, the concentration of KOH for the final solution is 0.275 M
Answer: 8556 mm, or 855.6 cm (8560 mm to 3 sig figs)
Explanation: Convert mm to cm by dividing by 10 (1cm/10mm)
Find the area of the foil face in cm^2 (30cm*0.2020cm) = 0.606 cm^2
Calculate the volume occupied by 1.40 kg of foil in cm^3. 1.40kg = 1400g
1.400g/(2.7 g/cm^3) = 518.5 cm^3 for 1.40 kg Au
Volume = Area (of the face) * Length
We want Length:
Length = Volume/Area
L = (518.5 cm^3/0.606 cm^2)
L = 855.6 cm (8556 mm) Round to 3 sig figs (856 cm and 8560 mm)
Percentage Yield = (Actual Yield ÷ Theoretical Yield) × 100
∴ if theoretical yield is 26 g, but only 22.0 is recovered from the reaction,
then Percentage Yield = (22 g ÷ 26 g) × 100
= 84.6 %