atomic number is equal to proton number
so the proton number will be 87
The answer should be D, cells can only create an identical copy of the original cell.
Answer:
-973 KJ
Explanation:
The balanced reaction equation is;
N2H4(aq) + 2Cl2(g) + 4OH^-(aq)---------> 4Cl-(aq) + 4H ^+(aq) + 4OH^-(aq) + N2(g)
Reduction potential of hydrazine = -1.16 V
Reduction potential of chlorine = 1.36 V
From;
E°cell= E°cathode - E°anode
E°cell= 1.36 - (-1.16)
E°cell= 2.52 V
∆G°=- nFE°cell
n= number of moles of electrons = 4
F= Faraday's constant = 96500 C
E°cell = 2.52 V
∆G°=- (4 × 96500 × 2.52)
∆G°= -972720 J
∆G°= -972.72 KJ
<u>Answer:</u> The reactant ratio in the given chemical equation will be: 
<u>Explanation:</u>
Mole ratio is defined as the ratio of the amount of moles of two substances that are participating in a chemical reaction.
In the given chemical equation:

The reactants are Fe and
and the product is 
The mole ratio is basically the stoichiometric ratio of the chemical compounds taking part in a chemical reaction.
The mole ratio of reactants is stoichiometric ratio of Fe and
, which is:

Hence, the reactant ratio in the given chemical equation will be: 
The volume of the 0.15 M LiOH solution required to react with 50 mL of 0.4 M HCOOH to the equivalence point is 133.3 mL
<h3>Balanced equation </h3>
HCOOH + LiOH —> HCOOLi + H₂O
From the balanced equation above,
The mole ratio of the acid, HCOOH (nA) = 1
The mole ratio of the base, LiOH (nB) = 1
<h3>How to determine the volume of LiOH </h3>
- Molarity of acid, HCOOH (Ma) = 0.4 M
- Volume of acid, HCOOH (Va) = 50 mL
- Molarity of base, LiOH (Mb) = 0.15 M
- Volume of base, LiOH (Vb) =?
MaVa / MbVb = nA / nB
(0.4 × 50) / (0.15 × Vb) = 1
20 / (0.15 × Vb) = 1
Cross multiply
0.15 × Vb = 20
Divide both side by 0.15
Vb = 20 / 0.15
Vb = 133.3 mL
Thus, the volume of the LiOH solution needed is 133.3 mL
Learn more about titration:
brainly.com/question/14356286