Answer:
0.04 M
Explanation:
Given data:
Mass of Na₂SO₄= 14.2 g
Volume of solution = 2.50 L
Molarity of solution = ?
Solution:
Number of moles of Na₂SO₄:
Number of moles = mass/ molar mass
Number of moles = 14.2 g/ 142.04 g/mol
Number of moles = 0.1 mol
Molarity :
Molarity = number of moles of solute / volume of solution in L
Molarity = 0.1 mol / 2.50 L
Molarity = 0.04 M
Relative dating can only determine the sequential order<span> of events, not the exact date which something occurred. It is useful for being able to determine a timeline of events in an exact point, but won't give a full picture of events in the past nor account for the age of material.
</span>
Answer : The volume of stock solution needed are, 12.5 mL
Explanation :
Formula used :

where,
are the initial molarity and volume of copper (II) chloride.
are the final molarity and volume of stock solution of copper (II) chloride.
We are given:

Putting values in above equation, we get:

Hence, the volume of stock solution needed are, 12.5 mL
Answer: 581 gmol
0.581 kmol

Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:

1. The conversion for mol to gmol
1 mol = 1 gmol
581 mol= 
2. The conversion for mol to kmol
1 mol = 0.001 kmol
581 mol= 
3. The conversion for mol to lbmol
1 mol = 
581 mol= 
Answer:
Empirical formula is CCl₄
Explanation:
Given data:
Percentage of carbon = 7.70%
Percentage of chlorine = 92.3%
Empirical formula = ?
Solution:
Number of gram atoms of Cl = 92.3 / 35.5 = 2.6
Number of gram atoms of C = 7.70 / 12 = 0.64
Atomic ratio:
C : Cl
0.64/0.64 : 2.6/0.64
1 : 4
C : Cl = 1 : 4
Empirical formula is CCl₄.