Answer: The balanced reaction is:
<span>2 C6H14(g)+ 19 O2(g) → 12 <span>CO2</span>(g)+ 14 H2O(g)
Note: While balancing the chemical reaction, care must be taken that total number atoms (of each type) on both reactant and product side must be same. In present case, there are 12 'C' atoms, 28 'H' atoms and 38 'O' atoms on both reactant and product side. Hence, the reaction is balanced. </span>
Answer:
D
Explanation:
Ocean breezes keep coastal galveston cooler than Del Rio, which is inland exposed to southerly winds.
Answer: The expression for equilibrium constant is ![\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)
Explanation: Equilibrium constant is the expression which relates the concentration of products and reactants preset at equilibrium at constant temperature. It is represented as 
For a general reaction:

The equilibrium constant is written as:
![k_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=k_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
Chemical reaction for the formation of ammonia is:


Expression for
is:
![k_c=\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=k_c%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)
![1.6\times 10^2=\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=1.6%5Ctimes%2010%5E2%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)
I'm pretty sure they come closer, and on the small chance i'm wrong, they separate.<span />
The balanced equation is attached in the image below. The coefficients are 2, 2, blank.