Answer:
a) fem = - 2.1514 10⁻⁴ V, b) I = - 64.0 10⁻³ A, c) P = 1.38 10⁻⁶ W
Explanation:
This exercise is about Faraday's law
fem = 
where the magnetic flux is
Ф = B x A
the bold are vectors
A = π r²
we assume that the angle between the magnetic field and the normal to the area is zero
fem = - B π 2r dr/dt = - 2π B r v
linear and angular velocity are related
v = w r
w = 2π f
v = 2π f r
we substitute
fem = - 2π B r (2π f r)
fem = -4π² B f r²
For the magnetic field of Jupiter we use the equatorial field B = 428 10⁻⁶T
we reduce the magnitudes to the SI system
f = 2 rev / s (2π rad / 1 rev) = 4π Hz
we calculate
fem = - 4π² 428 10⁻⁶ 4π 0.10²
fem = - 16π³ 428 10⁻⁶ 0.010
fem = - 2.1514 10⁻⁴ V
for the current let's use Ohm's law
V = I R
I = V / R
I = -2.1514 10⁻⁴ / 0.00336
I = - 64.0 10⁻³ A
Electric power is
P = V I
P = 2.1514 10⁻⁴ 64.0 10⁻³
P = 1.38 10⁻⁶ W
This is an elastic collision
bcuz i think they move apart after the collision
sorry if im wrong
Formulae for Kinetic energy is:
Kinetic Energy= 1/2xmassx(velocity)^2
For comparison we need to have same units,thus we convert 10g into Kg.
10g/1000=0.01Kg
Input the value of bullet in the formulae;
Kinetic Energy= 1/2x0.01kgx(400)^2
K.E=800J
Input value of the ball:
Kinetic Energy=1/2x80kgx(6.5)^2
K.E=1690J
Which means that th Energy of the ball is more than the bullet.
Answer:
true
Explanation:
depends on how young it starts usually at age 10 or 12 sometimes 13 are the most common ages to start this