Its a waste of time, you have to not only write it down, but study it after too . other than that notes are great.
(a) The skater covers a distance of S=50 m in a time of t=12.1 s, so its average speed is the ratio between the distance covered and the time taken:

(b) The initial speed of the skater is

while the final speed is

and the time taken to accelerate to this velocity is t=2 s, so the acceleration of the skater is given by

(c) The initial speed of the skater is

while the final speed is

since she comes to a stop. The distance covered is S=8 m, so we can use the following relationship to find the acceleration of the skater:

from which we find

where the negative sign means it is a deceleration.
Answer:
0.0065 m³
Explanation:
Apparent weight = weight − buoyancy
32 N = 96 N − (1000 kg/m³) (9.8 m/s²) V
V = 0.0065 m³
Speed = (distance) / (time)
Speed = (2.3 m) / (3 sec)
Speed = (2.3/3) (m/s)
<em>Speed = 0.766... m/s</em>
Answer:
Explanation:
The fish is initially at rest and it is also at rest when the spring is fully stretched at the maximum distance.
Change in gravity potential energy = change in spring potential energy
mgh = 1/2kh^2
Assume gravity constant g is 10m/s^2
2.6*10*h = 1/2*200*h^2
100h^2 - 26h = 0
2h(50h - 13) = 0
h = 0 or h = 13/50 = 0.65m
h = 0 is before the spring is stretched
So the maximum distance is 0.65m.