Explanation:
F = ma, and a = Δv / Δt.
F = m Δv / Δt
Given: m = 60 kg and Δv = -30 m/s.
a) Δt = 5.0 s
F = (60 kg) (-30 m/s) / (5.0 s)
F = -360 N
b) Δt = 0.50 s
F = (60 kg) (-30 m/s) / (0.50 s)
F = -3600 N
c) Δt = 0.05 s
F = (60 kg) (-30 m/s) / (0.05 s)
F = -36000 N
..........................................................
Answer:
17.1
Explanation:
The distance ahead, of the deer when it is sighted by the park ranger, d = 20 m
The initial speed with which the ranger was driving, u = 11.4 m/s
The acceleration rate with which the ranger slows down, a = (-)3.80 m/s² (For a vehicle slowing down, the acceleration is negative)
The distance required for the ranger to come to rest, s = Required
The kinematic equation of motion that can be used to find the distance the ranger's vehicle travels before coming to rest (the distance 's'), is given as follows;
v² = u² + 2·a·s
∴ s = (v² - u²)/(2·a)
Where;
v = The final velocity = 0 m/s (the vehicle comes to rest (stops))
Plugging in the values for 'v', 'u', and 'a', gives;
s = (0² - 11.4²)/(2 × -3.8) = 17.1
The distance the required for the ranger's vehicle to com to rest, s = 17.1 (meters).
on a given inclined we know that net force is given by

here we know that

so here we have


so here acceleration depends directly on angle of inclination
now we also know that if height of the inclined is H and its length is L
then we can write

so the acceleration is given as

so acceleration also depends directly on height of the inclined plane