Explanation:
It is given that,
When a high-energy proton or pion traveling near the speed of light collides with a nucleus, 
Speed of light, 
Let t is the time interval required for the strong interaction to occur. The speed is given by :




So, the time interval required for the strong interaction to occur is
. Hence, this is the required solution.
The mass number is the total number of protons and neutrons within an atom and since we know that the unknown element has 6 neutrons, we can simply subtract the number of neutrons from the mass number to get the number of protons.
17 - 6 = 11
There are 11 protons in this unknown element.
Extra:
The number of protons (+) and electrons (-) are equal in a neutral atom so since you know that there are 11 protons you also know that there are 11 electrons. On the periodic table, the element with 11 electrons is Na or Sodium.
Hope this helps! :)
Answer:
I₁ > I₃ > I₂
Explanation:
Taking the pic shown, we have
m₁ = 10m₀
m₂ = 2m₀
m₃ = m₀
r₁ = r₀
r₂ = 2r₀
r₃ = 3r₀
We apply the formula
I = mr²
then
I₁ = m₁r₁² = (10m₀)(r₀)² = 10m₀r₀²
I₂ = m₂r₂² = (2m₀)(2r₀)² = 8m₀r₀²
I₃ = m₃r₃² = (m₀)(3r₀)² = 9m₀r₀²
finally we have
I₁ > I₃ > I₂
The apparent magnitude scale is a classification scheme which is based on the brightness of stars. The range of brightness values is from 1 to 6.
The stars which are the most brightest are ranked as number 1 and also called first magnitude stars, stars which are little dimmer than number 1 are ranked as number 2 and also called second magnitude stars. Similarly the most faintest stars are ranked number 6 and also called as the sixth magnitude stars.
Answer:
Explanation:
The equation for Power is
P = Work/time to do work and the equation for work is
Work = FΔx
We first need to find the amount of work done, then we can find the power it took to do that work.
W = 2000(9.8)(28) so
W = 550,000 N*m
Now we fill that into the power equation:
gives us
P = 18000 Watts. But we need kW, so we divide by 1000 to get
P = 18 kW of power.